
PAMI
Release 2024.04.23

RAGE Uday Kiran

May 20, 2024

CONTENTS

1 Transactional Database 1
1.1 Frequent Pattern mining . 2
1.2 Relative Frequent Pattern . 25
1.3 Frequent pattern With Multiple Minimum Support . 29
1.4 Correlated Pattern Mining . 37
1.5 Fault-Tolerant Frequent Pattern Mining . 43
1.6 Coverage Pattern Mining . 50

2 Temporal Database 59
2.1 Periodic Frequent Pattern Mining . 60
2.2 Local Periodic Pattern Mining . 95
2.3 Partial Periodic Frequent Pattern Mining . 109
2.4 Partial Periodic Pattern Mining . 119
2.5 Periodic correlated pattern mining . 143
2.6 Stable Periodic Pattern Mining . 147
2.7 Recurring Pattern Mining . 160

3 Geo-referenced Pattern Mining 165
3.1 Geo-referenced Frequent Pattern Mining . 167
3.2 Geo-referenced Periodic Frequent Pattern Mining . 171
3.3 Geo-referenced Partial Periodic Pattern Mining . 175

4 Utility Pattern mining 181
4.1 High-Utility Pattern mining . 182
4.2 High-Utility Frequent Pattern Mining . 187
4.3 High-Utility Geo-referenced Frequent Pattern Mining . 192
4.4 High-Utility Spatial Pattern Mining . 197
4.5 Relative High-Utility Pattern Mining . 215
4.6 Weighted Frequent Pattern Mining . 226
4.7 Weighted Frequent Regular Pattern Mining . 230
4.8 Weighted Frequent Neighbourhood Pattern Mining . 235

5 Fuzzy Pattern Mining 241
5.1 Fuzzy Frequent Pattern Mining . 242
5.2 Fuzzy Correlated Pattern Mining . 247
5.3 Fuzzy Geo-referenced Frequent Pattern Mining . 251
5.4 Fuzzy Periodic Frequent Pattern Mining . 256
5.5 Fuzzy Geo-referenced Periodic Frequent Pattern Mining . 260

6 Uncertain Database 265
6.1 Uncertain Frequent Pattern mining . 267

i

6.2 Uncertain Periodic Frequent Pattern mining . 294
6.3 Uncertain Geo-Referenced Frequent Pattern mining . 303

7 Sequential Database 309
7.1 Sequential Frequent Pattern mining . 309
7.2 Geo-referenced Frequent Sequence Pattern mining . 323

8 Multiple Timeseries 325
8.1 Multiple Partial Periodic Pattern Mining . 326

9 Contiguous Patterns 331
9.1 Contiguous Frequent Patterns . 331

10 Indices and tables 333

Python Module Index 335

Index 337

ii

CHAPTER

ONE

TRANSACTIONAL DATABASE

A transactional database is a set of transactions.

Each transaction contains a transaction-identifier (TID) and a set of items.

Example:

A sample transactional database containing the items from a to f is shown in below.

TID Transactions
1 a, b, c
2 d, e
3 a, e, f

Rules to create a transactional database:

• Since the TID of a transaction directly represents its row number in a database, we the algorithms in PAMI ignore
the TID information to save storage space and processing time.

• The items in a transactional database can be integers or strings.

• All items in a transaction must be seperated with a separator.

• ‘ Tab space ’ is the default seperator used by the mining algorithms in PAMI. However, transactional databases
can also be constructed using other separators, such as comma and space.

Format:

>>> item1<sep>item2<sep>...<sep>itemN

Example:

>>> a b c
a d e f
b d

1

PAMI, Release 2024.04.23

1.1 Frequent Pattern mining

Frequent pattern mining is the process of identifying patterns or associations within a dataset that occur frequently.
This is typically done by analyzing large datasets to find items or sets of items that appear together frequently.

Applications: DNA sequences, protein structures, leading to insights in genetics and drug design.

1.1.1 Basic

Apriori

class PAMI.frequentPattern.basic.Apriori.Apriori(iFile, minSup, sep='\t')
Bases: _frequentPatterns

About this algorithm

Description
Apriori is one of the fundamental algorithm to discover frequent patterns in a transactional
database. This program employs apriori property (or downward closure property) to reduce
the search space effectively. This algorithm employs breadth-first search technique to find the
complete set of frequent patterns in a transactional database.

Reference
Agrawal, R., Imieli nski, T., Swami, A.: Mining association rules between sets of items in large
databases. In: SIGMOD. pp. 207–216 (1993), https://doi.org/10.1145/170035.170072

Parameters

• iFile (str or URL or dataFrame) – Name of the Input file to mine complete set of frequent
patterns.

• oFile (str) – Name of the output file to store complete set of frequent patterns.

• minSup (int or float or str) – The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float.

• sep (str) – This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

• startTime (float) – To record the start time of the mining process.

• endTime (float) – To record the completion time of the mining process.

• finalPatterns (dict) – Storing the complete set of patterns in a dictionary variable.

• memoryUSS (float) – To store the total amount of USS memory consumed by the program.

• memoryRSS (float) – To store the total amount of RSS memory consumed by the program.

• Database (list) – To store the transactions of a database in list.

2 Chapter 1. Transactional Database

https://doi.org/10.1145/170035.170072

PAMI, Release 2024.04.23

Execution methods

Terminal command

Format:

(.venv) $ python3 Apriori.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 Apriori.py sampleDB.txt patterns.txt 10.0

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

import PAMI1.frequentPattern.basic.Apriori as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.Apriori(iFile, minSup)

obj.mine()

frequentPattern = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPattern))

obj.save(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

1.1. Frequent Pattern mining 3

PAMI, Release 2024.04.23

Credits

The complete program was written by P. Likhitha and revised by Tarun Sreepada under the supervision of Pro-
fessor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, int]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Frequent pattern mining process will start from here

printResults()→ None
This function is used to print the result

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csvfile) – name of the output file

4 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

Returns
None

startMine()→ None
Frequent pattern mining process will start from here

ECLAT

class PAMI.frequentPattern.basic.ECLAT.ECLAT(iFile, minSup, sep='\t')
Bases: _frequentPatterns

About this algorithm

Description
ECLAT is one of the fundamental algorithm to discover frequent patterns in a transactional
database.

Reference
Mohammed Javeed Zaki: Scalable Algorithms for Association Mining. IEEE Trans. Knowl.
Data Eng. 12(3): 372-390 (2000), https://ieeexplore.ieee.org/document/846291

Parameters

• iFile (str or URL or dataFrame) – Name of the Input file to mine complete set of frequent
patterns.

• oFile (str) – Name of the Output file to store the frequent patterns.

• minSup (int or float or str) – The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count.

• sep (str) – This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

• startTime (float) – To record the start time of the mining process.

• endTime (float) – To record the end time of the mining process.

• finalPatterns (dict) – Storing the complete set of patterns in a dictionary variable.

• memoryUSS (float) – To store the total amount of USS memory consumed by the program.

• memoryRSS (float) – To store the total amount of RSS memory consumed by the program.

• Database (list) – To store the transactions of a database in list.

1.1. Frequent Pattern mining 5

https://ieeexplore.ieee.org/document/846291

PAMI, Release 2024.04.23

Execution methods

Terminal command

Format:

(.venv) $ python3 ECLAT.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 ECLAT.py sampleDB.txt patterns.txt 10.0

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

import PAMI.frequentPattern.basic.ECLAT as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.ECLAT(iFile, minSup)

obj.mine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

6 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

Credits:

The complete program was written by Kundai and revised by Tarun Sreepada under the supervision of Professor
Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ dict
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Frequent pattern mining process will start from here

printResults()→ None
Function used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csvfile) – name of the output file

1.1. Frequent Pattern mining 7

PAMI, Release 2024.04.23

Returns
None

startMine()→ None
Frequent pattern mining process will start from here

ECLATDiffset

class PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset(iFile, minSup, sep='\t')
Bases: _frequentPatterns

Description
ECLATDiffset uses diffset to extract the frequent patterns in a transactional database.

Reference
KDD ‘03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge dis-
covery and data mining August 2003 Pages 326–335 https://doi.org/10.1145/956750.956788

Parameters

• iFile (str or URL or dataFrame) – Name of the Input file to mine complete set of frequent
patterns.

• oFile (str) – Name of the output file to store complete set of frequent patterns

• minSup (int or float or str) – The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count.

• sep (str) – This variable is used to distinguish items from one another in a transac-
tion. The default seperator is tab space. However, the users can override their default
separator.

Attributes

• startTime (float) – To record the start time of the mining process.

• endTime (float) – To record the end time of the mining process.

• finalPatterns (dict) – Storing the complete set of patterns in a dictionary variable.

• memoryUSS (float) – To store the total amount of USS memory consumed by the program.

• memoryRSS (float) – To store the total amount of RSS memory consumed by the program.

• Database (list) – To store the transactions of a database in list.

Execution methods

Terminal command

Format:

(.venv) $ python3 ECLATDiffset.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 ECLATDiffset.py sampleDB.txt patterns.txt 10.0

8 Chapter 1. Transactional Database

https://doi.org/10.1145/956750.956788

PAMI, Release 2024.04.23

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

import PAMI.frequentPattern.basic.ECLATDiffset as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.ECLATDiffset(iFile, minSup)

obj.mine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.savePatterns(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by Kundai and revised by Tarun Sreepada under the supervision of Professor
Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

1.1. Frequent Pattern mining 9

PAMI, Release 2024.04.23

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()

Frequent pattern mining process will start from here

printResults()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csvfile) – name of the output file

startMine()

Frequent pattern mining process will start from here

ECLATbitset

class PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset(iFile, minSup, sep='\t')
Bases: _frequentPatterns

Description
ECLATbitset is one of the fundamental algorithm to discover frequent patterns in a transactional
database.

Reference
Mohammed Javeed Zaki: Scalable Algorithms for Association Mining. IEEE Trans. Knowl.
Data Eng. 12(3): 372-390 (2000), https://ieeexplore.ieee.org/document/846291

Parameters

10 Chapter 1. Transactional Database

https://ieeexplore.ieee.org/document/846291

PAMI, Release 2024.04.23

• iFile (str or URL or dataFrame) – Name of the Input file to mine complete set of frequent
patterns.

• oFile (str) – Name of the output file to store complete set of frequent patterns

• minSup (int or float or str) – The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count.

• sep (str) – This variable is used to distinguish items from one another in a transac-
tion. The default seperator is tab space. However, the users can override their default
separator.

Attributes

• startTime (float) – To record the start time of the mining process.

• endTime (float) – To record the end time of the mining process.

• finalPatterns (dict) – Storing the complete set of patterns in a dictionary variable.

• memoryUSS (float) – To store the total amount of USS memory consumed by the program.

• memoryRSS (float) – To store the total amount of RSS memory consumed by the program.

• Database (list) – To store the transactions of a database in list.

Execution methods

Terminal command

Format:

(.venv) $ python3 ECLATbitset.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 ECLATbitset.py sampleDB.txt patterns.txt 10.0

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

import PAMI.frequentPattern.basic.ECLATbitset as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.ECLATbitset(iFile, minSup)

obj.mine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)
(continues on next page)

1.1. Frequent Pattern mining 11

PAMI, Release 2024.04.23

(continued from previous page)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by Yudai Masu and revised by Tarun Sreepada under the supervision of
Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

12 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Frequent pattern mining process will start from here # Bitset implementation

printResults()

This function is used to print the result

save(outFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (file) – name of the outputfile

startMine()

Frequent pattern mining process will start from here

We start with the scanning the itemSets and store the bitsets respectively. We form the combinations of
single items and check with minSup condition to check the frequency of patterns

FPGrowth

class PAMI.frequentPattern.basic.FPGrowth.FPGrowth(iFile, minSup, sep='\t')
Bases: _frequentPatterns

About this algorithm

Description
FPGrowth is one of the fundamental algorithm to discover frequent patterns in a transactional
database. It stores the database in compressed fp-tree decreasing the memory usage and extracts
the patterns from tree.It employs downward closure property to reduce the search space effec-
tively.

Reference
Han, J., Pei, J., Yin, Y. et al. Mining Frequent Patterns without Candidate Generation: A
Frequent-Pattern Tree Approach. Data Mining and Knowledge Discovery 8, 53–87 (2004).
https://doi.org/10.1023

Parameters

• iFile (str or URL or dataFrame) – Name of the Input file to mine complete set of frequent
patterns.

• oFile (str) – Name of the output file to store complete set of frequent patterns.

• minSup (int or float or str) – The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float.

• sep (str) – This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

1.1. Frequent Pattern mining 13

https://doi.org/10.1023

PAMI, Release 2024.04.23

Attributes

• startTime (float) – To record the start time of the mining process.

• endTime (float) – To record the completion time of the mining process.

• finalPatterns (dict) – Storing the complete set of patterns in a dictionary variable.

• memoryUSS (float) – To store the total amount of USS memory consumed by the program.

• memoryRSS (float) – To store the total amount of RSS memory consumed by the program.

• Database (list) – To store the transactions of a database in list.

• mapSupport (Dictionary) – To maintain the information of item and their frequency.

• tree (class) – it represents the Tree class.

Execution methods

Terminal command

Format:

(.venv) $ python3 FPGrowth.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 FPGrowth.py sampleDB.txt patterns.txt 10.0

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

from PAMI.frequentPattern.basic import FPGrowth as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.FPGrowth(iFile, minSup)

obj.mine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.savePatterns(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)
(continues on next page)

14 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

(continued from previous page)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P. Likhitha and revised by Tarun Sreepada under the supervision of Pro-
fessor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, int]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

1.1. Frequent Pattern mining 15

PAMI, Release 2024.04.23

mine()→ None
Main program to start the operation

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csvfile) – name of the output file

Returns
None

startMine()

Starting the mining process

1.1.2 Closed

CHARM

class PAMI.frequentPattern.closed.CHARM.CHARM(iFile, minSup, sep='\t')
Bases: _frequentPatterns

Description
CHARM is an algorithm to discover closed frequent patterns in a transactional database. Closed
frequent patterns are patterns if there exists no superset that has the same support count as this
original itemset. This algorithm employs depth-first search technique to find the complete set of
closed frequent patterns in a transactional database.

Reference
Mohammed J. Zaki and Ching-Jui Hsiao, CHARM: An Efficient Algorithm for Closed Item-
set Mining, Proceedings of the 2002 SIAM, SDM. 2002, 457-473, https://doi.org/10.1137/1.
9781611972726.27

Parameters

• iFile (str or URL or dataFrame) – Name of the Input file to mine complete set of frequent
patterns.

• oFile (str) – Name of the output file to store complete set of frequent patterns.

• minSup (int or float or str) – The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float.

• sep (str) – This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

• startTime (float) – To record the start time of the mining process.

• endTime (float) – To record the completion time of the mining process.

• finalPatterns (dict) – Storing the complete set of patterns in a dictionary variable.

• memoryUSS (float) – To store the total amount of USS memory consumed by the program.

• memoryRSS (float) – To store the total amount of RSS memory consumed by the program.

16 Chapter 1. Transactional Database

https://doi.org/10.1137/1.9781611972726.27
https://doi.org/10.1137/1.9781611972726.27

PAMI, Release 2024.04.23

• Database (list) – To store the transactions of a database in list.

• mapSupport (Dictionary) – To maintain the information of item and their frequency.

• tree (class) – It represents the Tree class.

• itemSetCount (int) – It represents the total no of patterns.

• tidList (dict) – Stores the timestamps of an item.

• hashing (dict) – Stores the patterns with their support to check for the closed property.

Execution methods

Terminal command

Format:

(.venv) $ python3 CHARM.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 CHARM.py sampleDB.txt patterns.txt 10.0

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

from PAMI.frequentPattern.closed import CHARM as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.CHARM(iFile, minSup)

obj.mine()

frequentPatterns = obj.getPatterns()

print("Total number of Closed Frequent Patterns:", len(frequentPatterns))

obj.savePatterns(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

(continues on next page)

1.1. Frequent Pattern mining 17

PAMI, Release 2024.04.23

(continued from previous page)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha and revised by Tarun Sreepada under the supervision of Pro-
fessor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()

Mining process will start from here by extracting the frequent patterns from the database. It performs prefix
equivalence to generate the combinations and closed frequent patterns.

18 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

printResults()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csvfile) – name of the output file

startMine()

Mining process will start from here by extracting the frequent patterns from the database. It performs prefix
equivalence to generate the combinations and closed frequent patterns.

1.1.3 Maximal

MaxFPGrowth

class PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth(iFile, minSup, sep='\t')
Bases: _frequentPatterns

Description
MaxFP-Growth is one of the fundamental algorithm to discover maximal frequent patterns in a
transactional database.

Reference
Grahne, G. and Zhu, J., “High Performance Mining of Maximal Frequent itemSets”, http://users.
encs.concordia.ca/~grahne/papers/hpdm03.pdf

Parameters

• iFile – str : Name of the Input file to mine complete set of frequent patterns

• oFile – str : Name of the output file to store complete set of frequent patterns

• minSup – int or float or str : The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count.

• maxPer – float : The user can specify maxPer in count or proportion of database size. If
the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

finalPatterns
[dict] Storing the complete set of patterns in a dictionary variable

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

1.1. Frequent Pattern mining 19

http://users.encs.concordia.ca/~grahne/papers/hpdm03.pdf
http://users.encs.concordia.ca/~grahne/papers/hpdm03.pdf

PAMI, Release 2024.04.23

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

itemSetCount
[int] it represents the total no of patterns

finalPatterns
[dict] it represents to store the patterns

Methods to execute code on terminal

Format:

(.venv) $ python3 MaxFPGrowth.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 MaxFPGrowth.py sampleDB.txt patterns.txt 0.3

Note: minSup will be considered in percentage of database transactions

Importing this algorithm into a python program

from PAMI.frequentPattern.maximal import MaxFPGrowth as alg

obj = alg.MaxFPGrowth("../basic/sampleTDB.txt", "2")

obj.mine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.savePatterns("patterns")

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()
(continues on next page)

20 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

(continued from previous page)

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function :return:
returning RSS memory consumed by the mining process :rtype: float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function :return:
returning USS memory consumed by the mining process :rtype: float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process :return: returning
frequent patterns :rtype: dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe :return: returning frequent patterns in a dataframe :rtype:
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process :return: returning total amount of
runtime taken by the mining process :rtype: float

mine()

Mining process will start from this function

printResults()

This functon is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to a output file :param outFile: name of the output file
:type outFile: csvfile

startMine()

Mining process will start from this function

1.1. Frequent Pattern mining 21

PAMI, Release 2024.04.23

1.1.4 CUDA

cuApriori

cuAprioriBit

cuEclat

cuEclatBit

cudaAprioriGCT

cudaAprioriTID

cudaEclatGCT

1.1.5 Pyspark

parallelApriori

parallelECLAT

parallelFPGrowth

1.1.6 Top K

FAE

class PAMI.frequentPattern.topk.FAE.FAE(iFile, k, sep='\t')
Bases: _frequentPatterns

Description
Top - K is and algorithm to discover top frequent patterns in a transactional database.

Reference
Zhi-Hong Deng, Guo-Dong Fang: Mining Top-Rank-K Frequent Patterns: DOI:
10.1109/ICMLC.2007.4370261 · Source: IEEE Xplore https://ieeexplore.ieee.org/document/
4370261

Parameters

• iFile – str : Name of the Input file to mine complete set of frequent patterns

• oFile – str : Name of the output file to store complete set of frequent patterns

• k – int : User specified count of top frequent patterns

• minimum – int : Minimum number of frequent patterns to consider in analysis

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

startTime
[float] To record the start time of the mining process

22 Chapter 1. Transactional Database

https://ieeexplore.ieee.org/document/4370261
https://ieeexplore.ieee.org/document/4370261

PAMI, Release 2024.04.23

endTime
[float] To record the completion time of the mining process

finalPatterns
[dict] Storing the complete set of patterns in a dictionary variable

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

finalPatterns
[dict] it represents to store the patterns

Methods to execute code on terminal

Format:

(.venv) $ python3 FAE.py <inputFile> <outputFile> <K>

Example Usage:

(.venv) $ python3 FAE.py sampleDB.txt patterns.txt 10

Note: k will be considered as count of top frequent patterns to consider in analysis

Importing this algorithm into a python program

import PAMI.frequentPattern.topK.FAE as alg

obj = alg.FAE(iFile, K)

obj.mine()

topKFrequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(topKFrequentPatterns))

obj.save(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

(continues on next page)

1.1. Frequent Pattern mining 23

PAMI, Release 2024.04.23

(continued from previous page)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()

Main function of the program

24 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

printTOPK()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (file) – name of the output file

startMine()

Main function of the program

1.2 Relative Frequent Pattern

Relative Frequency is an extension of frequency where each frequency is represented relative to all the present frequen-
cies of different quantities. Frequency in mathematics represents the actual occurrence of quantities whereas relative
frequency represents the occurrence of quantities relative to each other. Suppose if we have a term with frequency f
and the total frequency of all the observation is n, then the relative frequency of the given observation is f/n.

Application: Market Basket Analysis, Web Usage Mining, Network Intrusion Detection, Manufacturing and Supply
Chain.

Relative Frequency is an extension of frequency where each frequency is represented relative to all the present frequen-
cies of different quantities. Frequency in mathematics represents the actual occurrence of quantities whereas relative
frequency represents the occurrence of quantities relative to each other. Suppose if we have a term with frequency f
and the total frequency of all the observation is n, then the relative frequency of the given observation is f/n.

Application: Market Basket Analysis, Web Usage Mining, Network Intrusion Detection, Manufacturing and Supply
Chain.

1.2.1 Basic

RSFPGrowth

class PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth(iFile: str | DataFrame, minSup:
int | float | str, minRS: float, sep:
str = '\t')

Bases: _frequentPatterns

Description
Algorithm to find all items with relative support from given dataset

Reference
‘Towards Efficient Discovery of Frequent Patterns with Relative Support’ R. Uday Kiran and
Masaru Kitsuregawa, http://comad.in/comad2012/pdf/kiran.pdf

Parameters

• iFile – str : Name of the Input file to mine complete set of Relative frequent pattern’s

• oFile – str : Name of the output file to store complete set of Relative frequent patterns

• minSup – str: Controls the minimum number of transactions in which every item must appear
in a database.

• minRS – float: Controls the minimum number of transactions in which at least one time
within a pattern must appear in a database.

1.2. Relative Frequent Pattern 25

http://comad.in/comad2012/pdf/kiran.pdf

PAMI, Release 2024.04.23

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file to mine complete set of frequent patterns

oFile
[file] Name of the output file to store complete set of frequent patterns

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

minSup
[float] The user given minSup

minRS
[float] The user given minRS

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

itemSetCount
[int] it represents the total no of patterns

finalPatterns
[dict] it represents to store the patterns

itemSetBuffer
[list] it represents the store the items in mining

maxPatternLength
[int] it represents the constraint for pattern length

Methods

startMine()
Mining process will start from here

getFrequentPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

26 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getmemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

check(line)
To check the delimiter used in the user input file

creatingItemSets(fileName)
Scans the dataset or dataframes and stores in list format

frequentOneItem()
Extracts the one-frequent patterns from transactions

saveAllCombination(tempBuffer,s,position,prefix,prefixLength)
Forms all the combinations between prefix and tempBuffer lists with support(s)

saveItemSet(pattern,support)
Stores all the frequent patterns with their respective support

frequentPatternGrowthGenerate(frequentPatternTree,prefix,port)
Mining the frequent patterns by forming conditional frequentPatternTrees to particular prefix
item. __mapSupport represents the 1-length items with their respective support

Methods to execute code on terminal

Format:

(.venv) $python3 RSFPGrowth.py <inputFile> <outputFile> <minSup> <__minRatio>

Example Usage :

(.venv) $python3 python3 RSFPGrowth.py sampleDB.txt patterns.txt 0.23 0.2

.. note:: maxPer and minPS will be considered in percentage of database␣
→˓transactions

1.2. Relative Frequent Pattern 27

PAMI, Release 2024.04.23

Importing this algorithm into a python program

from PAMI.relativeFrequentPattern import RSFPGrowth as alg

obj = alg.RSFPGrowth(iFile, minSup, __minRatio)

obj.startMine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getmemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by Sai Chitra.B under the supervision of Professor Rage Uday
Kiran.

Mine()→ None
Main program to start the operation :return: None

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

28 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

getPatterns()→ Dict[str, str]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

printResults()→ None
This function is used to print the results :return: None

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (file) – name of the output file.

Returns
None

startMine()→ None
Main program to start the operation :return: None

1.3 Frequent pattern With Multiple Minimum Support

Frequent patterns with multiple minimum support refer to patterns in a dataset that occur frequently and meet multiple
minimum support thresholds. Unlike traditional frequent pattern mining, which uses a single uniform minimum support
threshold for all items, this approach considers varying levels of support for different items in the dataset. By using
multiple minimum support thresholds, it allows for a more nuanced analysis, where the significance of each item is
evaluated individually based on its characteristics and importance in the context of the dataset.

Applications: Network Traffic Analysis, Manufacturing Process Optimization, Healthcare Data Analysis, Retail Market
Analysis.

Frequent patterns with multiple minimum support refer to patterns in a dataset that occur frequently and meet multiple
minimum support thresholds. Unlike traditional frequent pattern mining, which uses a single uniform minimum support
threshold for all items, this approach considers varying levels of support for different items in the dataset. By using
multiple minimum support thresholds, it allows for a more nuanced analysis, where the significance of each item is
evaluated individually based on its characteristics and importance in the context of the dataset.

1.3. Frequent pattern With Multiple Minimum Support 29

PAMI, Release 2024.04.23

Applications: Network Traffic Analysis, Manufacturing Process Optimization, Healthcare Data Analysis, Retail Market
Analysis.

1.3.1 Basic

CFPGrowth

class PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth(iFile, MIS,
sep='\t')

Bases: _frequentPatterns

Description
basic is one of the fundamental algorithm to discover frequent patterns based on multiple mini-
mum support in a transactional database.

Reference
Ya-Han Hu and Yen-Liang Chen. 2006. Mining association rules with multiple minimum sup-
ports: a new mining algorithm and a support tuning mechanism. Decis. Support Syst. 42, 1
(October 2006), 1–24. https://doi.org/10.1016/j.dss.2004.09.007

Parameters

• iFile – str : Name of the Input file to mine complete set of Uncertain Minimum Support
Based Frequent patterns

• oFile – str : Name of the output file to store complete set of Uncertain Minimum Support
Based Frequent patterns

• minSup – str: minimum support thresholds were tuned to find the appropriate ranges in the
limited memory

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Input file name or path of the input file

MIS: file or dictionary
Multiple minimum supports of all items in the database

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
separator is tab space or . However, the users can override their default separator.

oFile
[file] Name of the output file or the path of the output file

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

30 Chapter 1. Transactional Database

https://doi.org/10.1016/j.dss.2004.09.007

PAMI, Release 2024.04.23

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

finalPatterns
[dict] it represents to store the patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to an output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets()
Scans the dataset or dataframes and stores in list format

frequentOneItem()
Extracts the one-frequent patterns from transactions

Executing the code on terminal:

Format:

(.venv) $ python3 CFPGrowth.py <inputFile> <outputFile>

Examples:

(.venv) $ python3 CFPGrowth.py sampleDB.txt patterns.txt MISFile.txt

.. note:: minSup will be considered in support count or frequency

1.3. Frequent pattern With Multiple Minimum Support 31

PAMI, Release 2024.04.23

Sample run of the importing code:

from PAMI.multipleMinimumSupportBasedFrequentPattern.basic import basic as alg

obj = alg.basic(iFile, mIS)

obj.startMine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

Mine()→ None
main program to start the operation :return: none

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

32 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

getPatterns()→ Dict[str, int]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

printResults()→ None
this function is used to print the results :return: None

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (file) – name of the output file

Returns
None

startMine()→ None
main program to start the operation :return: none

CFPGrowthPlus

class PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus(iFile,
MIS,
sep='\t')

Bases: _frequentPatterns

Description
Reference

R. Uday Kiran P. Krishna Reddy Novel techniques to reduce search space in multiple minimum
supports-based frequent pattern mining algorithms. 11-20 2011 EDBT https://doi.org/10.1145/
1951365.1951370

Parameters

• iFile – str : Name of the Input file to mine complete set of Uncertain Multiple Minimum
Support Based Frequent patterns

1.3. Frequent pattern With Multiple Minimum Support 33

https://doi.org/10.1145/1951365.1951370
https://doi.org/10.1145/1951365.1951370

PAMI, Release 2024.04.23

• oFile – str : Name of the output file to store complete set of Uncertain Minimum Support
Based Frequent patterns

• minSup – str: minimum support thresholds were tuned to find the appropriate ranges in the
limited memory

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Input file name or path of the input file

MIS: file or dictionary
Multiple minimum supports of all items in the database

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
separator is tab space or . However, the users can override their default separator.

oFile
[file] Name of the output file or the path of the output file

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

finalPatterns
[dict] it represents to store the patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

savePatterns(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

34 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets()
Scans the dataset or dataframes and stores in list format

frequentOneItem()
Extracts the one-frequent patterns from transactions

Executing the code on terminal:

Format:

(.venv) $ python3 CFPGrowthPlus.py <inputFile> <outputFile>

Examples:

(.venv) $ python3 CFPGrowthPlus.py sampleDB.txt patterns.txt MISFile.txt

.. note:: minSup will be considered in support count or frequency

Sample run of the importing code:

from PAMI.multipleMinimumSupportBasedFrequentPattern.basic import CFPGrowthPlus as␣
→˓alg

obj = alg.CFPGrowthPlus(iFile, mIS)

obj.startMine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.savePatterns(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()
(continues on next page)

1.3. Frequent pattern With Multiple Minimum Support 35

PAMI, Release 2024.04.23

(continued from previous page)

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

Mine()

main program to start the operation

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

36 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

Return type
float

printResults()→ None
this function is used to print the results :return: None

save(outFile)
Complete set of frequent patterns will be loaded in to a output file

Parameters
outFile (file) – name of the output file

startMine()

main program to start the operation

1.4 Correlated Pattern Mining

Correlated patterns are specific types of regularities or associations that exist within a dataset, where the occurrence
of certain items or attributes is statistically correlated with the occurrence of other items or attributes. These patterns
represent meaningful relationships or dependencies between different sets of items or attributes, and their discovery
can provide valuable insights into the underlying structure and behavior of the data.

Applications: Fraud Detection, Supply Chain Management, Healthcare Data Analysis, Retail Market Analysis.

Correlated patterns are specific types of regularities or associations that exist within a dataset, where the occurrence
of certain items or attributes is statistically correlated with the occurrence of other items or attributes. These patterns
represent meaningful relationships or dependencies between different sets of items or attributes, and their discovery
can provide valuable insights into the underlying structure and behavior of the data.

Applications: Fraud Detection, Supply Chain Management, Healthcare Data Analysis, Retail Market Analysis.

1.4.1 Basic

CoMine

class PAMI.correlatedPattern.basic.CoMine.CoMine(iFile: str | DataFrame, minSup: int | float | str,
minAllConf: float, sep: str = '\t')

Bases: _correlatedPatterns

About this algorithm

Description
CoMine is one of the fundamental algorithm to discover correlated patterns in a transactional
database. It is based on the traditional FP-Growth algorithm. This algorithm uses depth-first
search technique to find all correlated patterns in a transactional database.

Reference
Lee, Y.K., Kim, W.Y., Cao, D., Han, J. (2003). CoMine: efficient mining of correlated patterns.
In ICDM (pp. 581–584).

parameters
iFile (str) – Name of the Input file to mine complete set of correlated patterns oFile (str) –
Name of the output file to store complete set of correlated patterns minSup (int or float or
str) – The user can specify minSup either in count or proportion of database size. If the

1.4. Correlated Pattern Mining 37

PAMI, Release 2024.04.23

program detects the data type of minSup is integer, then it treats minSup is expressed in
count. minAllConf (float) – The user can specify minAllConf values within the range (0, 1).
sep (str) – This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes
memoryUSS (float) – To store the total amount of USS memory consumed by the program
memoryRSS (float) – To store the total amount of RSS memory consumed by the program
startTime (float) – To record the start time of the mining process endTime (float) – To record
the completion time of the mining process minSup (int) – The user given minSup minAll-
Conf (float) – The user given minimum all confidence Ratio(should be in range of 0 to 1)
Database (list) – To store the transactions of a database in list mapSupport (Dictionary) – To
maintain the information of item and their frequency lno (int) – it represents the total no of
transactions tree (class) – it represents the Tree class itemSetCount (int) – it represents the
total no of patterns finalPatterns (dict) – it represents to store the patterns itemSetBuffer
(list) – it represents the store the items in mining maxPatternLength (int) – it represents
the constraint for pattern length

Execution methods

Terminal command

Format:

(.venv) $ python3 CoMine.py <inputFile> <outputFile> <minSup> <minAllConf> <sep>

Example Usage:

(.venv) $ python3 CoMine.py sampleTDB.txt output.txt 0.25 0.2

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

from PAMI.correlatedPattern.basic import CoMine as alg

iFile = 'sampleTDB.txt'

minSup = 0.25 # can be specified between 0 and 1

minAllConf = 0.2 # can be specified between 0 and 1

obj = alg.CoMine(iFile, minSup, minAllConf,sep)

obj.mine()

patterns = obj.getPatterns()

print("Total number of Patterns:", len(patterns))

obj.savePatterns(oFile)

(continues on next page)

38 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

(continued from previous page)

df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits

The complete program was written by B.Sai Chitra under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[Tuple[int], List[int | float]]
Function to send the set of correlated patterns after completion of the mining process

Returns
returning correlated patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final correlated patterns in a dataframe

Returns
returning correlated patterns in a dataframe

Return type
pd.DataFrame

1.4. Correlated Pattern Mining 39

PAMI, Release 2024.04.23

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
main method to start

printResults()→ None
function to print the result after completing the process

Returns
None

save(outFile)→ None
Complete set of correlated patterns will be saved into an output file

Parameters
outFile (file) – name of the outputfile

Returns
None

startMine()→ None
main method to start

CoMinePlus

class PAMI.correlatedPattern.basic.CoMinePlus.CoMinePlus(iFile: str | DataFrame, minSup: int | float
| str, minAllConf: str, sep: str = '\t')

Bases: _correlatedPatterns

About this algorithm

Description
CoMinePlus is one of the efficient algorithm to discover correlated patterns in a transactional
database. Using Item Support Intervals technique which is generating correlated patterns of
higher order by combining only with items that have support within specified interval.

Reference
Uday Kiran R., Kitsuregawa M. (2012) Efficient Discovery of Correlated Patterns in Transac-
tional Databases Using Items’ Support Intervals. In: Liddle S.W., Schewe KD., Tjoa A.M., Zhou
X. (eds) Database and Expert Systems Applications. DEXA 2012. Lecture Notes in Computer
Science, vol 7446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32600-4_
18

:parameters iFile (str) – Name of the Input file to mine complete set of correlated patterns
:oFile (str) – Name of the output file to store complete set of correlated patterns :minSup (int or float
or str) – The user can specify minSup either in count or proportion of database size. If the program
detects the data type of minSup is integer, then it treats minSup is expressed in count. :minAllConf
(str) – Name of Neighbourhood file name :sep (str) – This variable is used to distinguish items from

40 Chapter 1. Transactional Database

https://doi.org/10.1007/978-3-642-32600-4_18
https://doi.org/10.1007/978-3-642-32600-4_18

PAMI, Release 2024.04.23

one another in a transaction. The default seperator is tab space. However, the users can override
their default separator.

Attributes
memoryUSS (float) – To store the total amount of USS memory consumed by the program
memoryRSS (float) – To store the total amount of RSS memory consumed by the program
startTime (float) – To record the start time of the mining process endTime (float) – To record
the completion time of the mining process minSup (float) – The user given minSup minAll-
Conf (float) – The user given minimum all confidence Ratio (should be in range of 0 to 1)
Database (list) – To store the transactions of a database in list mapSupport (Dictionary) – To
maintain the information of item and their frequency lno (int) – it represents the total no of
transactions tree (class) – it represents the Tree class itemSetCount (int) – it represents the
total no of patterns finalPatterns (dict) – it represents to store the patterns itemSetBuffer
(list) – it represents the store the items in mining maxPatternLength (int) – it represents
the constraint for pattern length

Execution methods

Terminal command

Format:

(.venv) $ python3 CoMinePlus.py <inputFile> <outputFile> <minSup> <minAllConf> <sep>

Example Usage:

(.venv) $ python3 CoMinePlus.py sampleTDB.txt patterns.txt 0.4 0.5 ','

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

from PAMI.correlatedPattern.basic import CoMinePlus as alg

obj = alg.CoMinePlus(iFile, minSup, minAllConf, sep)

obj.mine()

correlatedPatterns = obj.getPatterns()

print("Total number of correlated patterns:", len(correlatedPatterns))

obj.save(oFile)

df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()
(continues on next page)

1.4. Correlated Pattern Mining 41

PAMI, Release 2024.04.23

(continued from previous page)

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits

The complete program was written by B.Sai Chitra under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[Tuple[str], List[int | float]]
Function to send the set of correlated patterns after completion of the mining process

Returns
returning correlated patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final correlated patterns in a dataframe

Returns
returning correlated patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

42 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

mine()→ None
Main program to start the operation

printResults()→ None
function to print the result after completing the process

save(outFile: str)→ None
Complete set of correlated patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Main program to start the operation

1.5 Fault-Tolerant Frequent Pattern Mining

Fault-tolerant frequent pattern mining is a data mining approach aimed at discovering frequent patterns in large datasets
containing both certain and uncertain records. Unlike traditional frequent pattern mining, which relies on exact match-
ing based on support and confidence values, fault-tolerant mining employs approximate matching techniques to find
patterns, thereby accommodating errors, missing information, or changes in the data. This approach allows for the
discovery of frequent patterns even in the presence of uncertainties or faults in the dataset.

Applications: Geo-spatial Data Analysis, Remote Sensing Image Analysis, Weather Forecasting.

Fault-tolerant frequent pattern mining is a data mining approach aimed at discovering frequent patterns in large datasets
containing both certain and uncertain records. Unlike traditional frequent pattern mining, which relies on exact match-
ing based on support and confidence values, fault-tolerant mining employs approximate matching techniques to find
patterns, thereby accommodating errors, missing information, or changes in the data. This approach allows for the
discovery of frequent patterns even in the presence of uncertainties or faults in the dataset.

Applications: Geo-spatial Data Analysis, Remote Sensing Image Analysis, Weather Forecasting.

1.5.1 Basic

FTApriori

class PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori(iFile, minSup, itemSup,
minLength, faultTolerance,
sep='\t')

Bases: _faultTolerantFrequentPatterns

Description
FT-Apriori is one of the fundamental algorithm to discover fault-tolerant frequent patterns in a
transactional database. This program employs apriori property (or downward closure property)
to reduce the search space effectively.

Reference
Pei, Jian & Tung, Anthony & Han, Jiawei. (2001). Fault-Tolerant Frequent Pattern Mining:
Problems and Challenges.

Parameters

1.5. Fault-Tolerant Frequent Pattern Mining 43

PAMI, Release 2024.04.23

• iFile – str : Name of the Input file to mine complete set of fault Tolerant frequent patterns

• oFile – str : Name of the output file to store complete set of falut Tolerant frequent patterns

• minSup – float or int or str : The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float. Example: minSup=10 will be
treated as integer, while minSup=10.0 will be treated as float

• itemSup – int or float : Frequency of an item

• minLength – int : minimum length of a pattern

• faultTolerance – int

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

finalPatterns
[dict] Storing the complete set of patterns in a dictionary variable

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the transactions of a database in list

Methods to execute code on terminal

Format:

(.venv) $ python3 FTApriori.py <inputFile> <outputFile> <minSup> <itemSup>
→˓<minLength> <faultTolerance>

Example Usage:

(.venv) $ python3 FTApriori.py sampleDB.txt patterns.txt 10.0 3.0 3 1

Note: minSup will be considered in times of minSup and count of database transactions

44 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

Importing this algorithm into a python program

from PAMI.faultTolerantFrequentPattern.basic import FTApriori as alg

obj = alg.FTApriori(inputFile,minSup,itemSup,minLength,faultTolerance)

obj.mine()

patterns = obj.getPatterns()

print("Total number of fault-tolerant frequent patterns:", len(patterns))

obj.save("outputFile")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[Tuple[str, ...], int]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

1.5. Fault-Tolerant Frequent Pattern Mining 45

PAMI, Release 2024.04.23

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Fault-tolerant frequent pattern mining process will start from here

printResults()→ None
This is function is used to print the result

save(outFile)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csvfile) – name of the output file

Returns
None

startMine()→ None
Fault-tolerant frequent pattern mining process will start from here

FTFPGrowth

class PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth(iFile: str | DataFrame,
minSup: int | float | str,
itemSup: float, minLength:
int, faultTolerance: int, sep:
str = '\t')

Bases: _faultTolerantFrequentPatterns

Description
FPGrowth is one of the fundamental algorithm to discover frequent patterns in a transactional
database. It stores the database in compressed fp-tree decreasing the memory usage and extracts
the patterns from tree.It employs downward closure property to reduce the search space effec-
tively.

Reference
Han, J., Pei, J., Yin, Y. et al. Mining Frequent Patterns without Candidate Generation: A
Frequent-Pattern Tree Approach. Data Mining and Knowledge Discovery 8, 53–87 (2004).
https://doi.org/10.1023

46 Chapter 1. Transactional Database

https://doi.org/10.1023

PAMI, Release 2024.04.23

Parameters

• iFile – file : Name of the Input file to mine complete set of fault Tolerant frequent patterns

• oFile – str : Name of the output file to store complete set of falut Tolerant frequent patterns

• minSup – float or int or str : The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float. Example: minSup=10 will be
treated as integer, while minSup=10.0 will be treated as float

:param sep
[str :] This variable is used to distinguish items from one another in a transaction. The default separator is
tab space or . However, the users can override their default separator.

Attributes

startTime: float :
To record the start time of the mining process

endTime: float :
To record the completion time of the mining process

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

finalPatterns
[dict] it represents to store the patterns

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to an output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

1.5. Fault-Tolerant Frequent Pattern Mining 47

PAMI, Release 2024.04.23

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets()
Scans the dataset or dataframes and stores in list format

frequentOneItem()
Extracts the one-frequent patterns from transactions

Executing the code on terminal:

Format:

(.venv) $ python3 FPGrowth.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 FPGrowth.py sampleDB.txt patterns.txt 10.0

Note: minSup will be considered in times of minSup and count of database transactions

Sample run of the importing code:

from PAMI.faultTolerantFrequentPattern.basic import FTFPGrowth as alg

obj = alg.FTFPGrowth(inputFile,minSup,itemSup,minLength,faultTolerance)

obj.mine()

patterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(patterns))

obj.save(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()
(continues on next page)

48 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

(continued from previous page)

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, int]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Main program to start the operation

printResults()→ None
This function is used to print the results

1.5. Fault-Tolerant Frequent Pattern Mining 49

PAMI, Release 2024.04.23

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Main program to start the operation

1.6 Coverage Pattern Mining

Coverage pattern mining is a data mining technique focused on identifying patterns within a dataset that cover a sub-
stantial portion of the data, irrespective of their frequency of occurrence. Unlike traditional frequent pattern mining,
which prioritizes patterns with high frequency, coverage pattern mining emphasizes patterns that have wide coverage
across the dataset. These patterns are considered significant as they provide insights into the overall characteristics
and trends present in the data. where understanding patterns that have broad coverage can inform decision-making
processes, optimize operations, and improve overall efficiency and effectiveness.

Applications: Retail, Healthcare, Web Usage, Manufacturing, and Social Network Analysis.

Coverage pattern mining is a data mining technique focused on identifying patterns within a dataset that cover a sub-
stantial portion of the data, irrespective of their frequency of occurrence. Unlike traditional frequent pattern mining,
which prioritizes patterns with high frequency, coverage pattern mining emphasizes patterns that have wide coverage
across the dataset. These patterns are considered significant as they provide insights into the overall characteristics
and trends present in the data. where understanding patterns that have broad coverage can inform decision-making
processes, optimize operations, and improve overall efficiency and effectiveness.

Applications: Retail, Healthcare, Web Usage, Manufacturing, and Social Network Analysis.

1.6.1 Basic

CMine

class PAMI.coveragePattern.basic.CMine.CMine(iFile, minRF, minCS, maxOR, sep='\t')
Bases: _coveragePatterns

About this algorithm

Description
CMine algorithms aims to discover the coverage patterns in transactional databases.

Reference
Bhargav Sripada, Polepalli Krishna Reddy, Rage Uday Kiran: Coverage patterns for ef-
ficient banner advertisement placement. WWW (Companion Volume) 2011: 131-132
__https://dl.acm.org/doi/10.1145/1963192.1963259

param iFile
str : Name of the Input file to mine complete set of coverage patterns

param oFile
str : Name of the output file to store complete set of coverage patterns

50 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

param minRF
str: Controls the minimum number of transactions in which every item must appear in a database.

param minCS
str: Controls the minimum number of transactions in which at least one time within a pattern
must appear in a database.

param maxOR
str: Controls the maximum number of transactions in which any two items within a pattern can
reappear.

param sep
str : This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space. However, the users can override their default separator.

Attributes

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

finalPatterns
[dict] Storing the complete set of patterns in a dictionary variable

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the transactions of a database in list

Execution methods

Terminal command

Format:

(.venv) $ python3 CMine.py <inputFile> <outputFile> <minRF> <minCS> <maxOR> <' '>

Example Usage:

(.venv) $ python3 CMine.py sampleTDB.txt patterns.txt 0.4 0.7 0.5 ' '

Calling from a python program

from PAMI.coveragePattern.basic import CMine as alg

obj = alg.CMine(iFile, minRF, minCS, maxOR, seperator)

obj.mine()

coveragePattern = obj.getPatterns()

print("Total number of coverage Patterns:", len(coveragePattern))
(continues on next page)

1.6. Coverage Pattern Mining 51

PAMI, Release 2024.04.23

(continued from previous page)

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

creatingCoverageItems()→ Dict[str, List[str]]
This function creates coverage items from _database.

Returns
coverageTidData that stores coverage items and their tid list.

Return type
dict

genPatterns(prefix: Tuple[str, int], tidData: List[Tuple[str, int]])→ None
This function generate coverage pattern about prefix.

Parameters

• prefix – String

• tidData – list

Returns
None

generateAllPatterns(coverageItems: Dict[str, int])→ None
This function generates all coverage patterns.

Parameters
coverageItems – coverage items

Returns
None

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

52 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, int]
Function to send the set of coverage patterns after completion of the mining process

Returns
returning coverage patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final coverage patterns in a dataframe

Returns
returning coverage patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Main method to start

printResults()→ None
This function is used to print the result

save(outFile: str)→ None
Complete set of coverage patterns will be loaded in to an output file

Parameters
outFile (file) – name of the outputfile

Returns
None

startMine()→ None
Main method to start

tidToBitset(item_set: Dict[str, int])→ Dict[str, int]
This function converts tid list to bitset.

Parameters
item_set –

1.6. Coverage Pattern Mining 53

PAMI, Release 2024.04.23

Returns
Dictionary

Return type
dict

CPPG

class PAMI.coveragePattern.basic.CPPG.CPPG(iFile, minRF, minCS, maxOR, sep='\t')
Bases: _coveragePatterns

Description
CPPG algorithm discovers coverage patterns in a transactional database.

Reference
Gowtham Srinivas, P.; Krishna Reddy, P.; Trinath, A. V.; Bhargav, S.; Uday Kiran, R. (2015).
Mining coverage patterns from transactional databases. Journal of Intelligent Information Sys-
tems, 45(3), 423–439. https://link.springer.com/article/10.1007/s10844-014-0318-3

Parameters

• iFile – str : Name of the Input file to mine complete set of coverage patterns

• oFile – str : Name of the output file to store complete set of coverage patterns

• minRF – str: Controls the minimum number of transactions in which every item must appear
in a database.

• minCS – str: Controls the minimum number of transactions in which at least one time within
a pattern must appear in a database.

• maxOR – str: Controls the maximum number of transactions in which any two items within
a pattern can reappear.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

finalPatterns
[dict] Storing the complete set of patterns in a dictionary variable

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the transactions of a database in list

54 Chapter 1. Transactional Database

https://link.springer.com/article/10.1007/s10844-014-0318-3

PAMI, Release 2024.04.23

Methods to execute code on terminal

Format:

(.venv) $ python3 CPPG.py <inputFile> <outputFile> <minRF> <minCS> <maxOR> <' '>

Example Usage:

(.venv) $ python3 CPPG.py sampleTDB.txt patterns.txt 0.4 0.7 0.5 ','

Note: minSup will be considered in percentage of database transactions

Importing this algorithm into a python program

from PAMI.coveragePattern.basic import CPPG as alg

obj = alg.CPPG(iFile, minRF, minCS, maxOR)

obj.mine()

coveragePattern = obj.getPatterns()

print("Total number of coverage Patterns:", len(coveragePattern))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

1.6. Coverage Pattern Mining 55

PAMI, Release 2024.04.23

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, List[int]]
Function to send the set of periodic-frequent patterns after completion of the mining process

Returns
returning periodic-frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Mining process will start from this function

printResults()→ None
Function used to print the result

save(outFile: str)→ None
Complete set of periodic-frequent patterns will be loaded in to an output file

Parameters
outFile (file) – name of the outputfile

56 Chapter 1. Transactional Database

PAMI, Release 2024.04.23

startMine()→ None
Mining process will start from this function

1.6. Coverage Pattern Mining 57

PAMI, Release 2024.04.23

58 Chapter 1. Transactional Database

CHAPTER

TWO

TEMPORAL DATABASE

A temporal database is a collection of transactions ordered by their timestamps. A sample temporal
database generated from the set of items, I={a,b,c,d,e,f}, is shown in below table:

TID Timestamp Transactions
1 1 a, b, c
2 2 d, e
3 4 a, e, f
4 7 d, f, g

Types of temporal databases:

• Regular temporal database: Uniform time gap exists between any two transactions.

• Irregular temporal database: Non-uniform time gap exists between any two transactions.

– Type-1 irregular temporal database: Every transaction will have a distinct timestamp.

– Type-2 irregular temporal database: Multiple transactions can have a common timestamp.

Rules to create a temporal database:

• Since TID of a transaction implicitly represents the row number, this information can be ignored to
save space.

• The first column in the database must represent a timestamp.

• The timestamp of the first transaction must always start from 1. The timestamps of remaining trans-
actions follow thereafter. In other words, the timestamps in a temporal database must be relative to
each other, rather than being absolute timestamps.

• Irregular time gaps can exist between the transactions.

• Multiple transactions can have a same timestamp. In other words, multiple transactions can occur
at a particular timestamp. (Please note that some pattern mining algorithms, especially variants of
ECLAT, may not work properly if multiple transactions share a common timestamp.)

• All items in a transaction must be seperated with a separator.

• The items in a temporal database can be integers or strings.

• ‘ Tab space ’ is the default seperator. However, temporal databases can be constructed using other
seperators, such as comma and space.

Format of a temporal database:

>>> timestamp<sep>item1<sep>item2<sep>...<sep>itemN

59

PAMI, Release 2024.04.23

Examples:

• Regular temporal database: Uniform time gap exists between the transactions.

1 a b c

2 d e

4 a e f

7 d f g

• Irregular temporal database (Type-1): Non-uniform time gap exists between the transactions. More
important, every transaction contains a unique timestamp.

1 a b c

2 d e

4 a e f

7 d f g

• Irregular temporal database (Type-2): Non-uniform time gap exists between the transactions. More
important, multiple transactions can have same timestamps.

1 a b c

1 d e

4 a e f

8 d f g

2.1 Periodic Frequent Pattern Mining

Periodic frequent pattern mining involves identifying patterns that occur at regular intervals within a temporal database,
where each record represents an event or observation associated with a specific timestamp. In this context, a pattern is
considered periodic-frequent if it satisfies user-defined constraints on both the minimum support (minSup) and maxi-
mum periodicity (maxPer). The goal is to discover patterns that exhibit regular recurring behavior over time, providing
insights into temporal trends, cyclic phenomena, or periodic events within the dataset. Unlike traditional frequent pat-
tern mining, which focuses on static datasets, periodic frequent pattern mining specifically targets temporal databases,
where time-related attributes play a crucial role in pattern discovery and analysis.

Applications: Temporal Data Analysis, Healthcare Monitoring, Retail Sales Forecasting, Network Traffic Analysis.

Periodic frequent pattern mining involves identifying patterns that occur at regular intervals within a temporal database,
where each record represents an event or observation associated with a specific timestamp. In this context, a pattern is
considered periodic-frequent if it satisfies user-defined constraints on both the minimum support (minSup) and maxi-
mum periodicity (maxPer). The goal is to discover patterns that exhibit regular recurring behavior over time, providing
insights into temporal trends, cyclic phenomena, or periodic events within the dataset. Unlike traditional frequent pat-
tern mining, which focuses on static datasets, periodic frequent pattern mining specifically targets temporal databases,
where time-related attributes play a crucial role in pattern discovery and analysis.

Applications: Temporal Data Analysis, Healthcare Monitoring, Retail Sales Forecasting, Network Traffic Analysis.

60 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

2.1.1 Basic

PFPGrowth

class PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth(iFile, minSup, maxPer, sep='\t')
Bases: _periodicFrequentPatterns

Description
PFPGrowth is one of the fundamental algorithm to discover periodic-frequent patterns in a trans-
actional database.

Reference
Syed Khairuzzaman Tanbeer, Chowdhury Farhan, Byeong-Soo Jeong, and Young-Koo Lee,
“Discovering Periodic-Frequent Patterns in Transactional Databases”, PAKDD 2009, https:
//doi.org/10.1007/978-3-642-01307-2_24

Parameters

• iFile – str : Name of the Input file to mine complete set of periodic frequent pattern’s

• oFile – str : Name of the output file to store complete set of periodic frequent pattern’s

• minSup – str: Controls the minimum number of transactions in which every item must appear
in a database.

• maxPer – float: Controls the maximum number of transactions in which any two items within
a pattern can reappear.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup
[int or float or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

maxPer
[int or float or str] The user can specify maxPer either in count or proportion of database size.
If the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count. Otherwise, it will be treated as float. Example: maxPer=10 will be treated as integer,
while maxPer=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

2.1. Periodic Frequent Pattern Mining 61

https://doi.org/10.1007/978-3-642-01307-2_24
https://doi.org/10.1007/978-3-642-01307-2_24

PAMI, Release 2024.04.23

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] To represent the total no of transaction

tree
[class] To represents the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

PeriodicFrequentOneItem()
Extracts the one-periodic-frequent patterns from database

updateDatabases()
Update the database by removing aperiodic items and sort the Database by item decreased
support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

62 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

convert()
to convert the user specified value

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

Mine()→ None
Mining process will start from this function :return: None

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, Tuple[int, int]]
Function to send the set of periodic-frequent patterns after completion of the mining process

Returns
returning periodic-frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

printResults()→ None
This function is used to print the results :return: None

2.1. Periodic Frequent Pattern Mining 63

PAMI, Release 2024.04.23

save(outFile: str)→ None
Complete set of periodic-frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Mining process will start from this function :return: None

PFPGrowthPlus

class PAMI.periodicFrequentPattern.basic.PFPGrowthPlus.PFPGrowthPlus(iFile, minSup, maxPer,
sep='\t')

Bases: _periodicFrequentPatterns

Description
PFPGrowthPlus is fundamental and improved version of PFPGrowth algorithm to dis-
cover periodic-frequent patterns in temporal database. It uses greedy approach to dis-
cover effectively

Reference
R. UdayKiran, MasaruKitsuregawa, and P. KrishnaReddyd, “Efficient discovery of
periodic-frequent patterns in very large databases,” Journal of Systems and Software
February 2016 https://doi.org/10.1016/j.jss.2015.10.035

param iFile
str : Name of the Input file to mine complete set of periodic frequent pattern’s

param oFile
str : Name of the output file to store complete set of periodic frequent pattern’s

param minSup
str: Controls the minimum number of transactions in which every item must appear in
a database.

param maxPer
str: Controls the maximum number of transactions in which any two items within a
pattern can reappear.

param sep
str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup
[int or float or str] The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats
minSup is expressed in count. Otherwise, it will be treated as float. Example: min-
Sup=10 will be treated as integer, while minSup=10.0 will be treated as float

64 Chapter 2. Temporal Database

https://doi.org/10.1016/j.jss.2015.10.035

PAMI, Release 2024.04.23

maxPer
[int or float or str] The user can specify maxPer either in count or proportion of
database size. If the program detects the data type of maxPer is integer, then it treats
maxPer is expressed in count. Otherwise, it will be treated as float. Example: max-
Per=10 will be treated as integer, while maxPer=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space or . However, the users can override their default sepa-
rator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transaction

tree
[class] it represents the Tree class

itemSetCount
[int] it represents the total no of patterns

finalPatterns
[dict] it represents to store the patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

2.1. Periodic Frequent Pattern Mining 65

PAMI, Release 2024.04.23

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

check(line)
To check the delimiter used in the user input file

creatingItemSets(fileName)
Scans the dataset or dataframes and stores in list format

PeriodicFrequentOneItem()
Extracts the one-periodic-frequent patterns from Databases

updateDatabases()
update the Databases by removing aperiodic items and sort the Database by item decreased
support

buildTree()
after updating the Databases ar added into the tree by setting root node as null

startMine()
the main method to run the program

Methods to execute code on terminal

Format:

(.venv) $ python3 PFPGrowthPlus.py <inputFile> <outputFile> <minSup> <maxPer>

Example:

(.venv) $ python3 PFPGrowthPlus.py sampleTDB.txt patterns.txt 0.3 0.4

.. note:: minSup will be considered in percentage of database transactions

Importing this algorithm into a python program

from PAMI.periodicFrequentPattern.basic import PFPGorwthPlus as alg

obj = alg.PFPGrowthPlus("../basic/sampleTDB.txt", "2", "6")

obj.startMine()

periodicFrequentPatterns = obj.getPatterns()

print("Total number of Periodic Frequent Patterns:",␣
→˓len(periodicFrequentPatterns))

obj.save("patterns")

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()
(continues on next page)

66 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

(continued from previous page)

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

The complete program was written by P.Likhitha under the supervision of Professor Rage
Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, Tuple[int, int]]
Function to send the set of periodic-frequent patterns after completion of the mining process

Returns
returning periodic-frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

2.1. Periodic Frequent Pattern Mining 67

PAMI, Release 2024.04.23

printResults()→ None
This function is used to print the results :return: None

save(outFile: str)→ None
Complete set of periodic-frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Main method where the patterns are mined by constructing tree. :return: None

PSGrowth

class PAMI.periodicFrequentPattern.basic.PSGrowth.Node(item, children)
Bases: object

A class used to represent the node of frequentPatternTree

Attributes

item
[int] storing item of a node

timeStamps
[list] To maintain the timeStamps of Database at the end of the branch

parent
[node] To maintain the parent of every node

children
[list] To maintain the children of node

Methods

addChild(itemName)
storing the children to their respective parent nodes

addChild(node)→ None
Appends the children node details to a parent node

Parameters
node – children node

Returns
appending children node to parent node

class PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth(iFile, minSup, maxPer, sep='\t')
Bases: _periodicFrequentPatterns

Description
PS-Growth is one of the fundamental algorithm to discover periodic-frequent patterns in a tem-
poral database.

:Reference
[A. Anirudh, R. U. Kiran, P. K. Reddy and M. Kitsuregaway, “Memory efficient mining of periodic-
frequent] patterns in transactional databases,” 2016 IEEE Symposium Series on Computational Intelligence
(SSCI), 2016, pp. 1-8, https://doi.org/10.1109/SSCI.2016.7849926

68 Chapter 2. Temporal Database

https://doi.org/10.1109/SSCI.2016.7849926

PAMI, Release 2024.04.23

Parameters

• iFile – str : Name of the Input file to mine complete set of periodic frequent pattern’s

• oFile – str : Name of the output file to store complete set of periodic frequent pattern’s

• minSup – str: Controls the minimum number of transactions in which every item must appear
in a database.

• maxPer – str: Controls the maximum number of transactions in which any two items within
a pattern can reappear.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup: int or float or str
The user can specify minSup either in count or proportion of database size. If the program
detects the data type of minSup is integer, then it treats minSup is expressed in count. Oth-
erwise, it will be treated as float. Example: minSup=10 will be treated as integer, while
minSup=10.0 will be treated as float

maxPer: int or float or str
The user can specify maxPer either in count or proportion of database size. If the program
detects the data type of maxPer is integer, then it treats maxPer is expressed in count. Oth-
erwise, it will be treated as float. Example: maxPer=10 will be treated as integer, while
maxPer=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
separator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transaction

tree
[class] it represents the Tree class

2.1. Periodic Frequent Pattern Mining 69

PAMI, Release 2024.04.23

itemSetCount
[int] it represents the total no of patterns

finalPatterns
[dict] it represents to store the patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to an output file

getConditionalPatternsInDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

OneLengthItems()
Scans the dataset or dataframes and stores in list format

buildTree()
after updating the Databases ar added into the tree by setting root node as null

Methods to execute code on terminal

Format:

(.venv) $ python3 PSGrowth.py <inputFile> <outputFile> <minSup> <maxPer>

Example:

(.venv) $ python3 PSGrowth.py sampleTDB.txt patterns.txt 0.3 0.4

.. note:: minSup will be considered in percentage of database␣
→˓transactions

70 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Importing this algorithm into a python program

from PAMI.periodicFrequentPattern.basic import PSGrowth as alg

obj = alg.PSGrowth("../basic/sampleTDB.txt", "2", "6")

obj.startMine()

periodicFrequentPatterns = obj.getPatterns()

print("Total number of Patterns:", len(periodicFrequentPatterns))

obj.save("patterns")

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

Mine()→ None
Mining process will start from this function :return: None

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

2.1. Periodic Frequent Pattern Mining 71

PAMI, Release 2024.04.23

getPatterns()→ dict
Function to send the set of periodic-frequent patterns after completion of the mining process

Returns
returning periodic-frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

printResults()→ None
This function is used to print the results :return: None

save(outFile: str)→ None
Complete set of periodic-frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Mining process will start from this function :return: None

PAMI.periodicFrequentPattern.basic.PSGrowth.conditionalTransactions(patterns, timestamp)→
Tuple[List[List[int]],
List[List[_Interval]],
Dict[int, Tuple[int, int]]]

To sort and update the conditional transactions by removing the items which fails frequency and periodicity
conditions

Parameters

• patterns – conditional patterns of a node

• timestamp – timeStamps of a conditional pattern

Returns
conditional transactions with their respective timeStamps

PAMI.periodicFrequentPattern.basic.PSGrowth.getPeriodAndSupport(timeStamps)→ List[int]
Calculates the period and support of list of timeStamps

72 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Parameters
timeStamps – timeStamps of a pattern or item

Returns
support and periodicity

PFECLAT

class PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT(iFile, minSup, maxPer, sep='\t')
Bases: _periodicFrequentPatterns

Description
PFECLAT is the fundamental approach to mine the periodic-frequent patterns.

Reference
P. Ravikumar, P.Likhitha, R. Uday kiran, Y. Watanobe, and Koji Zettsu, “Towards efficient dis-
covery of periodic-frequent patterns in columnar temporal databases”, 2021 IEA/AIE.

Parameters

• iFile – str : Name of the Input file to mine complete set of periodic frequent pattern’s

• oFile – str : Name of the output file to store complete set of periodic frequent pattern’s

• minSup – str: Controls the minimum number of transactions in which every item must appear
in a database.

• maxPer – str: Controls the maximum number of transactions in which any two items within
a pattern can reappear.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup
[int or float or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

maxPer
[int or float or str] The user can specify maxPer either in count or proportion of database size.
If the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count. Otherwise, it will be treated as float. Example: maxPer=10 will be treated as integer,
while maxPer=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

2.1. Periodic Frequent Pattern Mining 73

PAMI, Release 2024.04.23

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

itemSetCount
[int] it represents the total no of patterns

finalPatterns
[dict] it represents to store the patterns

tidList
[dict] stores the timestamps of an item

hashing
[dict] stores the patterns with their support to check for the closed property

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingOneItemSets()
Scan the database and store the items with their timestamps which are periodic frequent

getPeriodAndSupport()
Calculates the support and period for a list of timestamps.

Generation()
Used to implement prefix class equivalence method to generate the periodic patterns recur-
sively

74 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Methods to execute code on terminal

Format:

(.venv) $ python3 PFECLAT.py <inputFile> <outputFile> <minSup>

Example usage:

(.venv) $ python3 PFECLAT.py sampleDB.txt patterns.txt 10.0

.. note:: minSup will be considered in percentage of database transactions

Importing this algorithm into a python program

from PAMI.periodicFrequentPattern.basic import PFECLAT as alg

obj = alg.PFECLAT("../basic/sampleTDB.txt", "2", "5")

obj.startMine()

periodicFrequentPatterns = obj.getPatterns()

print("Total number of Periodic Frequent Patterns:",␣
→˓len(periodicFrequentPatterns))

obj.save("patterns")

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

2.1. Periodic Frequent Pattern Mining 75

PAMI, Release 2024.04.23

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

Mine()→ None
Mining process will start from this function :return: None

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ dict
Function to send the set of periodic-frequent patterns after completion of the mining process

Returns
returning periodic-frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

printResults()→ None
This function is used to print the results :return: None

save(outFile: str)→ None
Complete set of periodic-frequent patterns will be loaded in to a output file

Parameters
outFile (csv file) – name of the output file

76 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Returns
None

startMine()→ None
Mining process will start from this function :return: None

PFPMC

class PAMI.periodicFrequentPattern.basic.PFPMC.PFPMC(iFile, minSup, maxPer, sep='\t')
Bases: _periodicFrequentPatterns

Description
PFPMC is the fundamental approach to mine the periodic-frequent patterns.

Reference
(has to be added)

Parameters

• iFile – str : Name of the Input file to mine complete set of periodic frequent pattern’s

• oFile – str : Name of the output file to store complete set of periodic frequent pattern’s

• minSup – str: Controls the minimum number of transactions in which every item must appear
in a database.

• maxPer – str: Controls the maximum number of transactions in which any two items within
a pattern can reappear.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup
[int or float or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

maxPer
[int or float or str] The user can specify maxPer either in count or proportion of database size.
If the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count. Otherwise, it will be treated as float. Example: maxPer=10 will be treated as integer,
while maxPer=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

2.1. Periodic Frequent Pattern Mining 77

PAMI, Release 2024.04.23

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

itemSetCount
[int] it represents the total no of patterns

finalPatterns
[dict] it represents to store the patterns

tidList
[dict] stores the timestamps of an item

hashing
[dict] stores the patterns with their support to check for the closed property

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to an output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingOneItemSets()
Scan the database and store the items with their timestamps which are periodic frequent

getPeriodAndSupport()
Calculates the support and period for a list of timestamps.

Generation()
Used to implement prefix class equivalence method to generate the periodic patterns recur-
sively

78 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Methods to execute code on terminal

Format:

(.venv) $ python3 PFPMC.py <inputFile> <outputFile> <minSup> <maxPer>

Example usage:

(.venv) $ python3 PFPMC.py sampleDB.txt patterns.txt 10.0 4.0

.. note:: minSup and maxPer will be considered in percentage of database␣
→˓transactions

Importing this algorithm into a python program

from PAMI.periodicFrequentPattern.basic import PFPMC as alg

obj = alg.PFPMC("../basic/sampleTDB.txt", "2", "5")

obj.startMine()

periodicFrequentPatterns = obj.getPatterns()

print("Total number of Periodic Frequent Patterns:", len(periodicFrequentPatterns))

obj.save("patterns")

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

2.1. Periodic Frequent Pattern Mining 79

PAMI, Release 2024.04.23

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ dict
Function to send the set of periodic-frequent patterns after completion of the mining process

Returns
returning periodic-frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

printResults()→ None
This function is used to print the results :return: None

save(outFile: str)→ None
Complete set of periodic-frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

80 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

startMine()→ None
Mining process will start from this function :return: None

2.1.2 closed

CPFPMiner

class PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner(iFile, minSup, maxPer, sep='\t')
Bases: _periodicFrequentPatterns

About this algorithm

Description
CPFPMiner algorithm is used to discover the closed periodic frequent patterns in temporal
databases. It uses depth-first search.

Reference
P. Likhitha et al., “Discovering Closed Periodic-Frequent Patterns in Very Large Tempo-
ral Databases” 2020 IEEE International Conference on Big Data (Big Data), 2020, https:
//ieeexplore.ieee.org/document/9378215

param iFile
str : Name of the Input file to mine complete set of periodic frequent pattern’s

param oFile
str : Name of the output file to store complete set of periodic frequent pattern’s

param minSup
float: Controls the minimum number of transactions in which every item must appear in a
database.

param maxPer
float: Controls the maximum number of transactions in which any two items within a pattern can
reappear.

param sep
str : This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[str] Input file name or path of the input file

oFile
[str] Name of the output file or path of the input file

minSup: int or float or str
The user can specify minSup either in count or proportion of database size. If the program
detects the data type of minSup is integer, then it treats minSup is expressed in count. Oth-
erwise, it will be treated as float. Example: minSup=10 will be treated as integer, while
minSup=10.0 will be treated as float

maxPer: int or float or str
The user can specify maxPer either in count or proportion of database size. If the program

2.1. Periodic Frequent Pattern Mining 81

https://ieeexplore.ieee.org/document/9378215
https://ieeexplore.ieee.org/document/9378215

PAMI, Release 2024.04.23

detects the data type of maxPer is integer, then it treats maxPer is expressed in count. Oth-
erwise, it will be treated as float. Example: maxPer=10 will be treated as integer, while
maxPer=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

finalPatterns: dict
Storing the complete set of patterns in a dictionary variable

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to an output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

Execution methods

Terminal command

Format:

(.venv) $ python3 CPFPMiner.py <inputFile> <outputFile> <minSup> <maxPer>

Example:

(.venv) $ python3 CPFPMiner.py sampleTDB.txt patterns.txt 0.3 0.4
(continues on next page)

82 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

(continued from previous page)

.. note:: minSup will be considered in percentage of database transactions

Calling from a python program

from PAMI.periodicFrequentPattern.closed import CPFPMiner as alg

obj = alg.CPFPMiner("../basic/sampleTDB.txt", "2", "6")

obj.startMine()

periodicFrequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(periodicFrequentPatterns))

obj.save("patterns")

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

Mine()

Mining process will start from here

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

2.1. Periodic Frequent Pattern Mining 83

PAMI, Release 2024.04.23

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

printResults()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

startMine()

Mining process will start from here

2.1.3 maximal

MaxPFGrowth

class PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth(iFile: Any, minSup: int |
float | str, maxPer: int | float
| str, sep: str = '\t')

Bases: _periodicFrequentPatterns

Description
MaxPF-Growth is one of the fundamental algorithm to discover maximal periodic-frequent pat-
terns in a temporal database.

Reference
R. Uday Kiran, Yutaka Watanobe, Bhaskar Chaudhury, Koji Zettsu, Masashi Toyoda, Masaru
Kitsuregawa, “Discovering Maximal Periodic-Frequent Patterns in Very Large Temporal
Databases”, IEEE 2020, https://ieeexplore.ieee.org/document/9260063

84 Chapter 2. Temporal Database

https://ieeexplore.ieee.org/document/9260063

PAMI, Release 2024.04.23

Parameters

• iFile – str : Name of the Input file to mine complete set of periodic frequent pattern’s

• oFile – str : Name of the output file to store complete set of periodic frequent pattern’s

• minSup – str: Controls the minimum number of transactions in which every item must appear
in a database.

• maxPer – float: Controls the maximum number of transactions in which any two items within
a pattern can reappear.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup: int or float or str
The user can specify minSup either in count or proportion of database size. If the program
detects the data type of minSup is integer, then it treats minSup is expressed in count. Oth-
erwise, it will be treated as float. Example: minSup=10 will be treated as integer, while
minSup=10.0 will be treated as float

maxPer: int or float or str
The user can specify maxPer either in count or proportion of database size. If the program
detects the data type of maxPer is integer, then it treats maxPer is expressed in count. Oth-
erwise, it will be treated as float. Example: maxPer=10 will be treated as integer, while
maxPer=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
separator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transaction

tree
[class] it represents the Tree class

2.1. Periodic Frequent Pattern Mining 85

PAMI, Release 2024.04.23

itemSetCount
[int] it represents the total no of patterns

finalPatterns
[dict] it represents to store the patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset or dataframes and stores in list format

PeriodicFrequentOneItem()
Extracts the one-periodic-frequent patterns from Databases

updateDatabases()
update the Databases by removing aperiodic items and sort the Database by item decreased
support

buildTree()
after updating the Databases ar added into the tree by setting root node as null

startMine()
the main method to run the program

Executing the code on terminal:

Format:

(.venv) $ python3 maxpfrowth.py <inputFile> <outputFile> <minSup> <maxPer>

Examples usage :

(.venv) $ python3 maxpfrowth.py sampleTDB.txt patterns.txt 0.3 0.4

.. note:: minSup will be considered in percentage of database transactions

86 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Sample run of the imported code:

from PAMI.periodicFrequentPattern.maximal import MaxPFGrowth as alg

obj = alg.MaxPFGrowth("../basic/sampleTDB.txt", "2", "6")

obj.startMine()

Patterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(Patterns))

obj.save("patterns")

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

Mine()→ None
Mining process will start from this function :return: None

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

2.1. Periodic Frequent Pattern Mining 87

PAMI, Release 2024.04.23

getPatterns()→ Dict[str, Tuple[int, int]]
Function to send the set of periodic-frequent patterns after completion of the mining process

Returns
returning periodic-frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

printResults()→ None
To print the results of the execution.

save(outFile: str)→ None
Complete set of periodic-frequent patterns will be loaded in to a output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Mining process will start from this function :return: None

2.1.4 Top-K

kPFPMiner

class PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner(iFile, k, sep='\t')
Bases: _periodicFrequentPatterns

Description
Top - K is and algorithm to discover top periodic-frequent patterns in a temporal database.

Reference

Likhitha, P., Ravikumar, P., Kiran, R.U., Watanobe, Y. (2022).
Discovering Top-k Periodic-Frequent Patterns in Very Large Temporal Databases. Big Data
Analytics.

BDA 2022. Lecture Notes in Computer Science, vol 13773. Springer, Cham. https://doi.org/10.
1007/978-3-031-24094-2_14

88 Chapter 2. Temporal Database

https://doi.org/10.1007/978-3-031-24094-2_14
https://doi.org/10.1007/978-3-031-24094-2_14

PAMI, Release 2024.04.23

Parameters

• iFile – str : Name of the Input file to mine complete set of periodic frequent pattern’s

• oFile – str : Name of the output file to store complete set of periodic frequent pattern’s

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[str] Input file name or path of the input file

k: int
User specified counte of top-k periodic frequent patterns

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

oFile
[str] Name of the output file or the path of the output file

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

finalPatterns: dict
Storing the complete set of patterns in a dictionary variable

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

savePatterns(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

2.1. Periodic Frequent Pattern Mining 89

PAMI, Release 2024.04.23

creatingItemSets()
Scans the dataset or dataframes and stores in list format

frequentOneItem()
Generates one frequent patterns

eclatGeneration(candidateList)
It will generate the combinations of frequent items

generateFrequentPatterns(tidList)
It will generate the combinations of frequent items from a list of items

Executing the code on terminal:

Format:

(.venv) $ python3 kPFPMiner.py <inputFile> <outputFile> <k>

Examples :

(.venv) $ python3 kPFPMiner.py sampleDB.txt patterns.txt 10

**Sample run of the importing code:

import PAMI.periodicFrequentPattern.kPFPMiner as alg

obj = alg.kPFPMiner(iFile, k)

obj.startMine()

periodicFrequentPatterns = obj.getPatterns()

print("Total number of top-k Periodic Frequent Patterns:",␣
→˓len(periodicFrequentPatterns))

obj.save(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

90 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getPer_Sup(tids)

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

lno = 0

printResults()

save(outFile)
Complete set of frequent patterns will be loaded in to a output file

Parameters
outFile (file) – name of the output file

2.1. Periodic Frequent Pattern Mining 91

PAMI, Release 2024.04.23

startMine()

Main function of the program

TopkPFP

class PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth(iFile, minSup, maxPer,
sep='\t')

Bases: _periodicFrequentPatterns

Description
Top - K is and algorithm to discover top periodic frequent patterns in a temporal
database.

Reference
Komate Amphawan, Philippe Lenca, Athasit Surarerks: “Mining Top-K Periodic-
Frequent Pattern from Transactional Databases without Support Threshold” Interna-
tional Conference on Advances in Information Technology: https://link.springer.com/
chapter/10.1007/978-3-642-10392-6_3

param iFile
str : Name of the Input file to mine complete set of periodic frequent pattern’s

param oFile
str : Name of the output file to store complete set of periodic frequent pattern’s

param maxPer
str: Controls the maximum number of transactions in which any two items within a
pattern can reappear.

param sep
str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[str] Input file name or path of the input file

k: int
User specified counte of top frequent patterns

sep
[str] This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space or . However, the users can override their default sepa-
rator.

oFile
[str] Name of the output file or the path of the output file

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

finalPatterns: dict
Storing the complete set of patterns in a dictionary variable

memoryUSS
[float] To store the total amount of USS memory consumed by the program

92 Chapter 2. Temporal Database

https://link.springer.com/chapter/10.1007/978-3-642-10392-6_3
https://link.springer.com/chapter/10.1007/978-3-642-10392-6_3

PAMI, Release 2024.04.23

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from
this function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from
this function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this func-
tion

creatingItemSets()
Scans the dataset or dataframes and stores in list format

frequentOneItem()
Generates one frequent patterns

eclatGeneration(candidateList)
It will generate the combinations of frequent items

generateFrequentPatterns(tidList)
It will generate the combinations of frequent items from a list of items

Format:

(.venv) $ python3 TopkPFP.py <inputFile> <outputFile> <k> <maxPer>

Examples:

(.venv) $ python3 TopkPFP.py sampleDB.txt patterns.txt 10 3

Sample run of the importing code:

.. code-block:: python

import PAMI.periodicFrequentPattern.topk.TopkPFPGrowth as alg

obj = alg.TopkPFPGrowth(iFile, k, maxPer)

obj.startMine()
(continues on next page)

2.1. Periodic Frequent Pattern Mining 93

PAMI, Release 2024.04.23

(continued from previous page)

periodicFrequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(periodicFrequentPatterns))

obj.save(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of␣
→˓Professor Rage Uday Kiran.

Mine()

Main function of the program

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

94 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

printResults()

To print the results of the execution.

save(outFile)
Complete set of frequent patterns will be loaded in to a output file

Parameters
outFile (file) – name of the output file

startMine()

Main function of the program

2.2 Local Periodic Pattern Mining

Local Periodic Patterns (LPPs) which are patterns that have a periodic behavior in some non-predefined time-intervals.
A pattern is said to be a local periodic pattern if it appears regularly and continuously in some time interval (s). A
pattern is considered a local periodic pattern if it demonstrates periodic behavior within one or more distinct time
intervals, indicating temporal regularity that may vary across different segments of the dataset. Unlike traditional
periodic patterns, which assume consistent periodic behavior over time, LPPs are characterized by their regular and
continuous appearance within certain time intervals.

Applications: Anomaly Detection, Time Series Forecasting, Resource Management.

Local Periodic Patterns (LPPs) which are patterns that have a periodic behavior in some non-predefined time-intervals.
A pattern is said to be a local periodic pattern if it appears regularly and continuously in some time interval (s). A
pattern is considered a local periodic pattern if it demonstrates periodic behavior within one or more distinct time
intervals, indicating temporal regularity that may vary across different segments of the dataset. Unlike traditional
periodic patterns, which assume consistent periodic behavior over time, LPPs are characterized by their regular and
continuous appearance within certain time intervals.

Applications: Anomaly Detection, Time Series Forecasting, Resource Management.

2.2. Local Periodic Pattern Mining 95

PAMI, Release 2024.04.23

2.2.1 Basic

LPPGrowth

class PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth(iFile, maxPer, maxSoPer, minDur,
sep='\t')

Bases: _localPeriodicPatterns

Description
Local Periodic Patterns, which are patterns (sets of events) that have a periodic behavior in some
non predefined time-intervals. A pattern is said to be a local periodic pattern if it appears reg-
ularly and continuously in some time-intervals. The maxSoPer (maximal period of spillovers)
measure allows detecting time-intervals of variable lengths where a pattern is continuously pe-
riodic, while the minDur (minimal duration) measure ensures that those time-intervals have a
minimum duration.

Reference
Fournier-Viger, P., Yang, P., Kiran, R. U., Ventura, S., Luna, J. M.. (2020). Mining Local Pe-
riodic Patterns in a Discrete Sequence. Information Sciences, Elsevier, to appear. [ppt] DOI:
10.1016/j.ins.2020.09.044

Parameters

• iFile – str : Name of the Input file to mine complete set of local periodic pattern’s

• oFile – str : Name of the output file to store complete set of local periodic patterns

• minDur – str: Minimal duration in seconds between consecutive periods of time-intervals
where a pattern is continuously periodic.

• maxPer – float: Controls the maximum number of transactions in which any two items within
a pattern can reappear.

• maxSoPer – float: Controls the maximum number of time periods between consecutive pe-
riods of time-intervals where a pattern is continuously periodic.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[str] Input file name or path of the input file

oFile
[str] Output file name or path of the output file

maxPer
[float] User defined maxPer value.

maxSoPer
[float] User defined maxSoPer value.

minDur
[float] User defined minDur value.

tsMin
[int / date] First time stamp of input data.

tsMax
[int / date] Last time stamp of input data.

96 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

startTime
[float] Time when start of execution the algorithm.

endTime
[float] Time when end of execution the algorithm.

finalPatterns
[dict] To store local periodic patterns and its PTL.

tsList
[dict] To store items and its time stamp as bit vector.

root
[Tree] It is root node of transaction tree of whole input data.

PTL
[dict] Storing the item and its PTL.

items
[list] Storing local periodic item list.

sep: str
separator used to distinguish items from each other. The default separator is tab space.

Methods

findSeparator(line)
Find the separator of the line which split strings.

creteLPPlist()
Create the local periodic patterns list from input data.

createTSList()
Create the tsList as bit vector from input data.

generateLPP()
Generate 1 length local periodic pattens by tsList and execute depth first search.

createLPPTree()
Create LPPTree of local periodic item from input data.

patternGrowth(tree, prefix, prefixPFList)
Execute pattern growth algorithm. It is important function in this program.

calculatePTL(tsList)
Calculate PTL from input tsList as integer list.

calculatePTLbit(tsList)
Calculate PTL from input tsList as bit vector.

mine()
Mining process will start from here.

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function.

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function.

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function.

2.2. Local Periodic Pattern Mining 97

PAMI, Release 2024.04.23

getLocalPeriodicPatterns()
return local periodic patterns and its PTL

save(oFile)
Complete set of local periodic patterns will be loaded in to an output file.

getPatternsAsDataFrame()
Complete set of local periodic patterns will be loaded in to a dataframe.

Executing the code on terminal:

Format:

(.venv) $ python3 LPPMGrowth.py <inputFile> <outputFile> <maxPer> <minSoPer>
→˓<minDur>

Example Usage:

(.venv) $ python3 LPPMGrowth.py sampleDB.txt patterns.txt 0.3 0.4 0.5

Sample run of importing the code:

from PAMI.localPeriodicPattern.basic import LPPGrowth as alg

obj = alg.LPPGrowth(iFile, maxPer, maxSoPer, minDur)

obj.mine()

localPeriodicPatterns = obj.getPatterns()

print(f'Total number of local periodic patterns: {len(localPeriodicPatterns)}')

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print(f'Total memory in USS: {memUSS}')

memRSS = obj.getMemoryRSS()

print(f'Total memory in RSS: {memRSS}')

runtime = obj.getRuntime()

print(f'Total execution time in seconds: {runtime})

98 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Credits:

The complete program was written by So Nakamura under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict
Function to send the set of local periodic patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final local periodic patterns in a dataframe

Returns
returning local periodic patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Mining process start from here.

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of local periodic patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

2.2. Local Periodic Pattern Mining 99

PAMI, Release 2024.04.23

Returns
None

startMine()→ None
Mining process start from here.

class PAMI.localPeriodicPattern.basic.LPPGrowth.Node

Bases: object

A class used to represent the node of localPeriodicPatternTree

Attributes

item
[int] storing item of a node

parent
[node] To maintain the parent of every node

child
[list] To maintain the children of node

nodeLink
[node] To maintain the next node of node

tidList
[set] To maintain timestamps of node

Methods

getChild(itemName)
storing the children to their respective parent nodes

getChild(item: int)→ Node
This function is used to get child node from the parent node

Parameters
item (int) – item of the parent node

Returns
if node have node of item, then return it. if node don’t have return []

Return type
Node

class PAMI.localPeriodicPattern.basic.LPPGrowth.Tree

Bases: object

A class used to represent the frequentPatternGrowth tree structure

Attributes

root
[node] Represents the root node of the tree

nodeLinks
[dictionary] storing last node of each item

firstNodeLink
[dictionary] storing first node of each item

Methods

addTransaction(transaction,timeStamp)
creating transaction as a branch in frequentPatternTree

100 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

fixNodeLinks(itemName, newNode)
add newNode link after last node of item

deleteNode(itemName)
delete all node of item

createPrefixTree(path,timeStampList)
create prefix tree by path

addTransaction(transaction: List[int], tid: int)→ None
add transaction into tree

Parameters

• transaction (list) – it represents the one transaction in database

• tid (list or int) – represents the timestamp of transaction

Returns
None

createPrefixTree(path: List[int], tidList: List[int])→ None
create prefix tree by path

Parameters

• path (list) – it represents path to root from prefix node

• tidList (list) – it represents tid of each item

Returns
None

deleteNode(item: int)→ None
delete the node from tree

Parameters
item (str) – it represents the item name of node

Returns
None

fixNodeLinks(item: int, newNode: Node)→ None
fix node link

Parameters

• item (string) – it represents item name of newNode

• newNode (Node) – it represents node which is added

Returns
None

2.2. Local Periodic Pattern Mining 101

PAMI, Release 2024.04.23

LPPMBreadth

class PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth(iFile, maxPer, maxSoPer, minDur,
sep='\t')

Bases: _localPeriodicPatterns

Description
Local Periodic Patterns, which are patterns (sets of events) that have a periodic behavior in some
non predefined time-intervals. A pattern is said to be a local periodic pattern if it appears reg-
ularly and continuously in some time-intervals. The maxSoPer (maximal period of spillovers)
measure allows detecting time-intervals of variable lengths where a pattern is continuously pe-
riodic, while the minDur (minimal duration) measure ensures that those time-intervals have a
minimum duration.

Reference
Fournier-Viger, P., Yang, P., Kiran, R. U., Ventura, S., Luna, J. M.. (2020). Mining Local Pe-
riodic Patterns in a Discrete Sequence. Information Sciences, Elsevier, to appear. [ppt] DOI:
10.1016/j.ins.2020.09.044

Parameters

• iFile – str : Name of the Input file to mine complete set of local periodic pattern’s

• oFile – str : Name of the output file to store complete set of local periodic patterns

• minDur – str: Minimal duration in seconds between consecutive periods of time-intervals
where a pattern is continuously periodic.

• maxPer – float: Controls the maximum number of transactions in which any two items within
a pattern can reappear.

• maxSoPer – float: Controls the maximum number of time periods between consecutive pe-
riods of time-intervals where a pattern is continuously periodic.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[str] Input file name or path of the input file

oFile
[str] Output file name or path of the output file

maxPer
[float] User defined maxPer value.

maxSoPer
[float] User defined maxSoPer value.

minDur
[float] User defined minDur value.

tsMin
[int / date] First time stamp of input data.

tsMax
[int / date] Last time stamp of input data.

startTime
[float] Time when start of execution the algorithm.

102 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

endTime
[float] Time when end of execution the algorithm.

finalPatterns
[dict] To store local periodic patterns and its PTL.

tsList
[dict] To store items and its time stamp as bit vector.

sep: str
separator used to distinguish items from each other. The default separator is tab space.

Methods

createTSList()
Create the tsList as bit vector from input data.

generateLPP()
Generate 1 length local periodic pattens by tsList and execute depth first search.

calculatePTL(tsList)
Calculate PTL from input tsList as bit vector

LPPMBreathSearch(extensionOfP)
Mining local periodic patterns using breadth first search.

mine()
Mining process will start from here.

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function.

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function.

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function.

getLocalPeriodicPatterns()
return local periodic patterns and its PTL

save(oFile)
Complete set of local periodic patterns will be loaded in to an output file.

getPatternsAsDataFrame()
Complete set of local periodic patterns will be loaded in to a dataframe.

Executing the code on terminal:

Format:

(.venv) $ python3 LPPBreadth.py <inputFile> <outputFile> <maxPer> <minSoPer>
→˓<minDur>

Example Usage:

(.venv) $ python3 LPPMBreadth.py sampleDB.txt patterns.txt 0.3 0.4 0.5

2.2. Local Periodic Pattern Mining 103

PAMI, Release 2024.04.23

Sample run of importing the code:

from PAMI.localPeriodicPattern.basic import LPPMBreadth as alg

obj = alg.LPPMBreadth(iFile, maxPer, maxSoPer, minDur)

obj.mine()

localPeriodicPatterns = obj.getPatterns()

print(f'Total number of local periodic patterns: {len(localPeriodicPatterns)}')

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print(f'Total memory in USS: {memUSS}')

memRSS = obj.getMemoryRSS()

print(f'Total memory in RSS: {memRSS}')

runtime = obj.getRuntime()

print(f'Total execution time in seconds: {runtime})

Credits:

The complete program was written by So Nakamura under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[Tuple[str, ...] | str, Set[Tuple[int, int]]]
Function to send the set of local periodic patterns after completion of the mining process

104 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final local periodic patterns in a dataframe

Returns
returning local periodic patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Mining process start from here.

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of local periodic patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Mining process start from here.

LPPMDepth

class PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth(iFile, maxPer, maxSoPer, minDur,
sep='\t')

Bases: _localPeriodicPatterns

Description
Local Periodic Patterns, which are patterns (sets of events) that have a periodic behavior in some
non predefined time-intervals. A pattern is said to be a local periodic pattern if it appears reg-
ularly and continuously in some time-intervals. The maxSoPer (maximal period of spillovers)
measure allows detecting time-intervals of variable lengths where a pattern is continuously pe-
riodic, while the minDur (minimal duration) measure ensures that those time-intervals have a
minimum duration.

2.2. Local Periodic Pattern Mining 105

PAMI, Release 2024.04.23

Reference
Fournier-Viger, P., Yang, P., Kiran, R. U., Ventura, S., Luna, J. M.. (2020). Mining Local Pe-
riodic Patterns in a Discrete Sequence. Information Sciences, Elsevier, to appear. [ppt] DOI:
10.1016/j.ins.2020.09.044

Parameters

• iFile – str : Name of the Input file to mine complete set of local periodic pattern’s

• oFile – str : Name of the output file to store complete set of local periodic patterns

• minDur – str: Minimal duration in seconds between consecutive periods of time-intervals
where a pattern is continuously periodic.

• maxPer – float: Controls the maximum number of transactions in which any two items within
a pattern can reappear.

• maxSoPer – float: Controls the maximum number of time periods between consecutive pe-
riods of time-intervals where a pattern is continuously periodic.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[str] Input file name or path of the input file

oFile
[str] Output file name or path of the output file

maxPer
[float] User defined maxPer value.

maxSoPer
[float] User defined maxSoPer value.

minDur
[float] User defined minDur value.

tsmin
[int / date] First time stamp of input data.

tsmax
[int / date] Last time stamp of input data.

startTime
[float] Time when start of execution the algorithm.

endTime
[float] Time when end of execution the algorithm.

finalPatterns
[dict] To store local periodic patterns and its PTL.

tsList
[dict] To store items and its time stamp as bit vector.

sep
[str] separator used to distinguish items from each other. The default separator is tab space.

Methods

createTSlist()
Create the TSlist as bit vector from input data.

106 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

generateLPP()
Generate 1 length local periodic pattens by TSlist and execute depth first search.

calculatePTL(tsList)
Calculate PTL from input tsList as bit vector

LPPMDepthSearch(extensionOfP)
Mining local periodic patterns using depth first search.

mine()
Mining process will start from here.

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function.

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function.

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function.

getLocalPeriodicPatterns()
return local periodic patterns and its PTL

save(oFile)
Complete set of local periodic patterns will be loaded in to an output file.

getPatternsAsDataFrame()
Complete set of local periodic patterns will be loaded in to a dataframe.

Executing the code on terminal:

Format:

(.venv) $ python3 LPPMDepth.py <inputFile> <outputFile> <maxPer> <minSoPer> <minDur>

Example Usage:

(.venv) $ python3 LPPMDepth.py sampleDB.txt patterns.txt 0.3 0.4 0.5

Sample run of importing the code:

from PAMI.localPeriodicPattern.basic import LPPMDepth as alg

obj = alg.LPPMDepth(iFile, maxPer, maxSoPer, minDur)

obj.mine()

localPeriodicPatterns = obj.getPatterns()

print(f'Total number of local periodic patterns: {len(localPeriodicPatterns)}')

obj.save(oFile)
(continues on next page)

2.2. Local Periodic Pattern Mining 107

PAMI, Release 2024.04.23

(continued from previous page)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print(f'Total memory in USS: {memUSS}')

memRSS = obj.getMemoryRSS()

print(f'Total memory in RSS: {memRSS}')

runtime = obj.getRuntime()

print(f'Total execution time in seconds: {runtime})

Credits:

The complete program was written by So Nakamura under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[Tuple[str, ...] | str, Set[Tuple[int, int]]]
Function to send the set of local periodic patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final local periodic patterns in a dataframe

Returns
returning local periodic patterns in a dataframe

Return type
pd.DataFrame

108 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Mining process start from here. This function calls createTSlist and generateLPP.

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of local periodic patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Mining process start from here. This function calls createTSlist and generateLPP.

2.3 Partial Periodic Frequent Pattern Mining

Partial Periodic-Frequent Patterns in a temporal database are recurring patterns that exhibit partial cyclic repetitions
over time. Unlike full periodic-frequent patterns, which require complete cyclic repetitions, partial periodic-frequent
patterns capture temporal regularities that may not follow a strict periodicity. These patterns represent recurring behav-
iors or events within specific time intervals, where the frequency of occurrence varies but still demonstrates a degree
of periodicity. The interestingness of a partial periodic-frequent pattern is determined by its periodic ratio, which
measures the proportion of cyclic repetitions it exhibits in the database.

Applications: Predictive Maintenance, Traffic Management, Environmental Monitoring.

Partial Periodic-Frequent Patterns in a temporal database are recurring patterns that exhibit partial cyclic repetitions
over time. Unlike full periodic-frequent patterns, which require complete cyclic repetitions, partial periodic-frequent
patterns capture temporal regularities that may not follow a strict periodicity. These patterns represent recurring behav-
iors or events within specific time intervals, where the frequency of occurrence varies but still demonstrates a degree
of periodicity. The interestingness of a partial periodic-frequent pattern is determined by its periodic ratio, which
measures the proportion of cyclic repetitions it exhibits in the database.

Applications: Predictive Maintenance, Traffic Management, Environmental Monitoring.

2.3. Partial Periodic Frequent Pattern Mining 109

PAMI, Release 2024.04.23

2.3.1 Basic

GPFgrowth

class PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth(iFile, minSup, maxPer,
minPR, sep='\t')

Bases: partialPeriodicPatterns

Description
GPFgrowth is algorithm to mine the partial periodic frequent pattern in temporal database.

Reference
R. Uday Kiran, J.N. Venkatesh, Masashi Toyoda, Masaru Kitsuregawa, P. Krishna Reddy, Discov-
ering partial periodic-frequent patterns in a transactional database, Journal of Systems and Soft-
ware, Volume 125, 2017, Pages 170-182, ISSN 0164-1212, https://doi.org/10.1016/j.jss.2016.
11.035.

Parameters

• iFile – str : Name of the Input file to mine complete set of frequent pattern’s

• oFile – str : Name of the output file to store complete set of frequent patterns

• minSup – str: The user can specify minSup either in count or proportion of database size.

• minPR – str: Controls the maximum number of transactions in which any two items within
a pattern can reappear.

• maxPer – str: Controls the maximum number of transactions in which any two items within
a pattern can reappear.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

inputFile
[file] Name of the input file to mine complete set of frequent pattern

minSup
[float] The user defined minSup

maxPer
[float] The user defined maxPer

minPR
[float] The user defined minPR

finalPatterns
[dict] it represents to store the pattern

runTime
[float] storing the total runtime of the mining process

memoryUSS
[float] storing the total amount of USS memory consumed by the program

memoryRSS
[float] storing the total amount of RSS memory consumed by the program

Methods

110 Chapter 2. Temporal Database

https://doi.org/10.1016/j.jss.2016.11.035
https://doi.org/10.1016/j.jss.2016.11.035

PAMI, Release 2024.04.23

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

storePatternsInFile(ouputFile)
Complete set of frequent patterns will be loaded in to an output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to an output file

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

Executing code on Terminal:

Format:

>>> python3 GPFgrowth.py <inputFile> <outputFile> <minSup> <maxPer>
→˓<minPR>

Examples:

>>> python3 GPFgrowth.py sampleDB.txt patterns.txt 10 10 0.5

Sample run of the importing code:

. . . code-block:: python

from PAMI.partialPeriodicFrequentPattern.basic import GPFgrowth as alg

obj = alg.GPFgrowth(inputFile, outputFile, minSup, maxPer, minPR)

obj.startMine()

partialPeriodicFrequentPatterns = obj.getPatterns()

print(“Total number of partial periodic Patterns:”, len(partialPeriodicFrequentPatterns))

obj.save(oFile)

Df = obj.getPatternInDf()

memUSS = obj.getMemoryUSS()

print(“Total Memory in USS:”, memUSS)

memRSS = obj.getMemoryRSS()

print(“Total Memory in RSS”, memRSS)

run = obj.getRuntime()

2.3. Partial Periodic Frequent Pattern Mining 111

PAMI, Release 2024.04.23

print(“Total ExecutionTime in seconds:”, run)

Credits:

The complete program was written by Nakamura under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function :return:
returning RSS memory consumed by the mining process :rtype: float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function :return:
returning USS memory consumed by the mining process :rtype: float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process :return: returning
frequent patterns :rtype: dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe :return: returning frequent patterns in a dataframe :rtype:
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process :return: returning total amount of
runtime taken by the mining process :rtype: float

mine()

printResults()

this function is used to print the results

runTime = 0

save(outFile)
Complete set of frequent patterns will be loaded in to an output file :param outFile: name of the output file
:type outFile: csv file

class PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.Node

Bases: object

A class used to represent the node of frequentPatternTree

Attributes

item
[int] storing item of a node

parent
[node] To maintain the parent of every node

child
[list] To maintain the children of node

nodeLink
[node] To maintain the next node of node

tidList
[set] To maintain timestamps of node

112 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Methods

getChild(itemName)
storing the children to their respective parent nodes

getChild(item)

Parameters
item –

Returns
if node have node of item, then return it. if node don’t have return []

class PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.PFgrowth(tree, prefix, PFList, minSup,
maxPer, minPR, last)

Bases: object

This class is pattern growth algorithm

Attributes

tree
[Node] represents the root node of prefix tree

prefix
[list] prefix is list of prefix items

PFList
[dict] storing time stamp each item

minSup
[float] user defined min Support

maxPer
[float] user defined max Periodicity

minPR
[float] user defined min PR

last
[int] represents last time stamp in database

Methods

run
it is pattern growth algorithm

run()

run the pattern growth algorithm :return: partial periodic frequent pattern in conditional pattern

class PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.Tree

Bases: object

A class used to represent the frequentPatternGrowth tree structure

Attributes

root
[node] Represents the root node of the tree

nodeLinks
[dictionary] storing last node of each item

2.3. Partial Periodic Frequent Pattern Mining 113

PAMI, Release 2024.04.23

firstNodeLink
[dictionary] storing first node of each item

Methods

addTransaction(transaction,timeStamp)
creating transaction as a branch in frequentPatternTree

fixNodeLinks(itemName, newNode)
add newNode link after last node of item

deleteNode(itemName)
delete all node of item

createPrefixTree(path,timeStampList)
create prefix tree by path

createConditionalTree(PFList, minSup, maxPer, minPR, last)
create conditional tree. Its nodes are satisfy IP / (minSup+1) >= minPR

addTransaction(transaction, tid)
add transaction into tree

Parameters

• transaction (list) – it represents the one transactions in database

• tid (list) – represents the timestamp of transaction

createConditionalTree(PFList, minSup, maxPer, minPR, last)
create conditional tree by PFlist

Parameters

• PFList (dict) – it represents timestamp each item

• minSup – it represents minSup

• maxPer – it represents maxPer

• minPR – it represents minPR

• last – it represents last timestamp in database

Returns
return is PFlist which satisfy ip / (minSup+1) >= minPR

createPrefixTree(path, tidList)
create prefix tree by path

Parameters

• path (list) – it represents path to root from prefix node

• tidList (list) – it represents tid of each item

deleteNode(item)

delete the node from tree

Parameters
item (str) – it represents the item name of node

fixNodeLinks(item, newNode)
fix node link

Parameters

114 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

• item (string) – it represents item name of newNode

• newNode (Node) – it represents node which is added

class PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.calculateIP(maxPer, timeStamp,
timeStampFinal)

Bases: object

This class calculate ip from timestamp

Attributes

maxPer
[float] it represents user defined maxPer value

timeStamp
[list] it represents timestamp of item

timeStampFinal
[int] it represents last timestamp of database

Methods

run
calculate ip from its timestamp list

run()

calculate ip from timeStamp list :return: it represents ip value

class PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.generatePFListver2(Database,
minSup,
maxPer,
minPR)

Bases: object

generate time stamp list from input file

Attributes

inputFile
[str] it is input file name

minSup
[float] user defined minimum support value

maxPer
[float] user defined max Periodicity value

minPR
[float] user defined min PR value

PFList
[dict] storing timestamps each item

findSeparator(line)
find separator of line in database

Parameters
line (list) – it represents one line in database

2.3. Partial Periodic Frequent Pattern Mining 115

PAMI, Release 2024.04.23

Returns
return separator

run()

generate PFlist :return: timestamps and last timestamp

class PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.generatePFTreever2(Database,
tidList)

Bases: object

create tree from tidList and input file

Attributes

inputFile
[str] it represents input file name

tidList
[dict] storing tids each item

root
[Node] it represents the root node of the tree

Methods

run
it create tree

find separator(line)
find separator in the line of database

findSeparator(line)
find separator of line in database

Parameters
line (list) – it represents one line in database

Returns
return separator

run()

create tree from database and tidList :return: the root node of tree

PPF_DFS

class PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS(iFile, minSup, maxPer, minPR,
sep='\t')

Bases: partialPeriodicPatterns

Description
PPF_DFS is algorithm to mine the partial periodic frequent patterns.

References
(Has to be added)

Parameters

• iFile – str : Name of the Input file to mine complete set of frequent pattern’s

• oFile – str : Name of the output file to store complete set of frequent patterns

• minSup – str: The user can specify minSup either in count or proportion of database size.

116 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

• minPR – str: Controls the maximum number of transactions in which any two items within
a pattern can reappear.

• maxPer – str: Controls the maximum number of transactions in which any two items within
a pattern can reappear.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] input file path

oFile
[file] output file name

minSup
[float] user defined minSup

maxPer
[float] user defined maxPer

minPR
[float] user defined minPR

tidlist
[dict] it stores tids each item

last
[int] it represents last time stamp in database

lno
[int] number of line in database

mapSupport
[dict] to maintain the information of item and their frequency

finalPatterns
[dict] it represents to store the patterns

runTime
[float] storing the total runtime of the mining process

memoryUSS
[float] storing the total amount of USS memory consumed by the program

memoryRSS
[float] storing the total amount of RSS memory consumed by the program

Methods

getPer_Sup(tids)
caluclate ip / (sup+1)

getPerSup(tids)
caluclate ip

oneItems(path)
scan all lines in database

save(prefix,suffix,tidsetx)
save prefix pattern with support and periodic ratio

2.3. Partial Periodic Frequent Pattern Mining 117

PAMI, Release 2024.04.23

Generation(prefix, itemsets, tidsets)
Userd to implement prefix class equibalence method to generate the periodic patterns recur-
sively

startMine()
Mining process will start from here

getPartialPeriodicPatterns()
Complete set of patterns will be retrieved with this function

save(ouputFile)
Complete set of frequent patterns will be loaded in to an ouput file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to an ouput file

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

Executing code on Terminal:

Format:

>>> python3 PPF_DFS.py <inputFile> <outputFile> <minSup> <maxPer>
→˓<minPR>

Examples:

>>> python3 PPF_DFS.py sampleDB.txt patterns.txt 10 10 0.5

Sample run of the importing code:

. . . code-block:: python

from PAMI.partialPeriodicFrequentpattern.basic import PPF_DFS as alg

obj = alg.PPF_DFS(iFile, minSup)

obj.startMine()

frequentPatterns = obj.getPatterns()

print(“Total number of Frequent Patterns:”, len(frequentPatterns))

obj.save(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print(“Total Memory in USS:”, memUSS)

118 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

memRSS = obj.getMemoryRSS()

print(“Total Memory in RSS”, memRSS)

run = obj.getRuntime()

print(“Total ExecutionTime in seconds:”, run)

Credits:

The complete program was written by S. Nakamura under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function :return:
returning RSS memory consumed by the mining process :rtype: float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function :return:
returning USS memory consumed by the mining process :rtype: float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process :return: returning
frequent patterns :rtype: dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe :return: returning frequent patterns in a dataframe :rtype:
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process :return: returning total amount of
runtime taken by the mining process :rtype: float

mine()

Main program start with extracting the periodic frequent items from the database and performs prefix equiv-
alence to form the combinations and generates closed periodic frequent patterns.

printResults()

this function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file :param outFile: name of the output file
:type outFile: csv file

2.4 Partial Periodic Pattern Mining

Partial periodic pattern mining involves the identification of recurring patterns or sequences within a dataset that exhibit
partial periodic behavior. Unlike traditional periodic pattern mining, where patterns repeat exactly at regular intervals,
partial periodic patterns may exhibit variations or irregularities in their periodicity. These patterns may occur intermit-
tently or periodically with some degree of variability, making them challenging to detect using conventional mining
techniques. Applications: Healthcare Monitoring, Financial Time Series Analysis, Network Traffic Analysis.

Partial periodic pattern mining involves the identification of recurring patterns or sequences within a dataset that exhibit
partial periodic behavior. Unlike traditional periodic pattern mining, where patterns repeat exactly at regular intervals,

2.4. Partial Periodic Pattern Mining 119

PAMI, Release 2024.04.23

partial periodic patterns may exhibit variations or irregularities in their periodicity. These patterns may occur intermit-
tently or periodically with some degree of variability, making them challenging to detect using conventional mining
techniques. Applications: Healthcare Monitoring, Financial Time Series Analysis, Network Traffic Analysis.

2.4.1 Basic

PPPGrowth

class PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth(iFile, minPS, period, sep='\t')
Bases: _partialPeriodicPatterns

Description
3pgrowth is fundamental approach to mine the partial periodic patterns in temporal database.

Reference
Discovering Partial Periodic Itemsets in Temporal Databases,SSDBM ‘17: Proceedings of the
29th International Conference on Scientific and Statistical Database ManagementJune 2017 Ar-
ticle No.: 30 Pages 1–6https://doi.org/10.1145/3085504.3085535

Parameters

• iFile – str : Name of the Input file to mine complete set of frequent pattern’s

• oFile – str : Name of the output file to store complete set of frequent patterns

• minPS – float: Minimum partial periodic pattern. . .

• period – float: Minimum partial periodic. . .

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minPS: float or int or str
The user can specify minPS either in count or proportion of database size. If the program de-
tects the data type of minPS is integer, then it treats minPS is expressed in count. Otherwise,
it will be treated as float. Example: minPS=10 will be treated as integer, while minPS=10.0
will be treated as float

period: float or int or str
The user can specify period either in count or proportion of database size. If the program
detects the data type of period is integer, then it treats period is expressed in count. Otherwise,
it will be treated as float. Example: period=10 will be treated as integer, while period=10.0
will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

120 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

finalPatterns
[dict] it represents to store the patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets()
Scans the dataset or dataframes and stores in list format

partialPeriodicOneItem()
Extracts the one-frequent patterns from transactions

updateTransactions()
updates the transactions by removing the aperiodic items and sort the transactions with items
by decreasing support

buildTree()
constrcuts the main tree by setting the root node as null

startMine()
main program to mine the partial periodic patterns

2.4. Partial Periodic Pattern Mining 121

PAMI, Release 2024.04.23

Executing the code on terminal:

Format:

(.venv) $python3 PPPGrowth.py <inputFile> <outputFile> <minPS> <period>

Examples:

(.venv) $ python3 PPPGrowth.py sampleDB.txt patterns.txt 10.0 2.0

Sample run of the importing code:

from PAMI.periodicFrequentPattern.basic import PPPGrowth as alg

obj = alg.PPPGrowth(iFile, minPS, period)

obj.startMine()

partialPeriodicPatterns = obj.getPatterns()

print("Total number of partial periodic Patterns:",␣
→˓len(partialPeriodicPatterns))

obj.save(oFile)

Df = obj.getPatternInDf()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

122 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, int]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Main method where the patterns are mined by constructing tree. :return: None

printResults()→ None
This function is used to print the results :return: None

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to a output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Main method where the patterns are mined by constructing tree. :return: None

2.4. Partial Periodic Pattern Mining 123

PAMI, Release 2024.04.23

PPP_ECLAT

class PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT(iFile, minPS, period, sep='\t')
Bases: _partialPeriodicPatterns

Descripition
3pEclat is the fundamental approach to mine the partial periodic frequent patterns.

Reference
R. Uday Kirana,b, , J.N. Venkateshd, Masashi Toyodaa , Masaru Kitsuregawaa,c , P. Krishna
Reddy Discovering partial periodic-frequent patterns in a transactional database https://www.
tkl.iis.u-tokyo.ac.jp/new/uploads/publication_file/file/774/JSS_2017.pdf

Parameters

• iFile – str : Name of the Input file to mine complete set of frequent pattern’s

• oFile – str : Name of the output file to store complete set of frequent patterns

• minPS – float: Minimum partial periodic pattern. . .

• period – float: Minimum partial periodic. . .

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

self.iFile
[file] Name of the Input file or path of the input file

self. oFile
[file] Name of the output file or path of the output file

minPS: float or int or str
The user can specify minPS either in count or proportion of database size. If the program de-
tects the data type of minPS is integer, then it treats minPS is expressed in count. Otherwise,
it will be treated as float. Example: minPS=10 will be treated as integer, while minPS=10.0
will be treated as float

period: float or int or str
The user can specify period either in count or proportion of database size. If the program
detects the data type of period is integer, then it treats period is expressed in count. Otherwise,
it will be treated as float. Example: period=10 will be treated as integer, while period=10.0
will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

124 Chapter 2. Temporal Database

https://www.tkl.iis.u-tokyo.ac.jp/new/uploads/publication_file/file/774/JSS_2017.pdf
https://www.tkl.iis.u-tokyo.ac.jp/new/uploads/publication_file/file/774/JSS_2017.pdf

PAMI, Release 2024.04.23

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

finalPatterns
[dict] it represents to store the patterns

tidList
[dict] stores the timestamps of an item

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to an output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingOneitemSets()
Scan the database and store the items with their timestamps which are periodic frequent

getPeriodAndSupport()
Calculates the support and period for a list of timestamps.

Generation()
Used to implement prefix class equivalence method to generate the periodic patterns recur-
sively

2.4. Partial Periodic Pattern Mining 125

PAMI, Release 2024.04.23

Executing the code on terminal:

Format:

(.venv) $ python3 PPP_ECLAT.py <inputFile> <outputFile> <minPS> <period>

Examples:

(.venv) $ python3 PPP_ECLAT.py sampleDB.txt patterns.txt 0.3 0.4

Sample run of importing the code:

. . . code-block:: python

from PAMI.periodicFrequentPattern.basic import PPP_ECLAT as alg

obj = alg.PPP_ECLAT(iFile, minPS,period)

obj.startMine()

Patterns = obj.getPatterns()

print(“Total number of partial periodic patterns:”, len(Patterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print(“Total Memory in USS:”, memUSS)

memRSS = obj.getMemoryRSS()

print(“Total Memory in RSS”, memRSS)

run = obj.getRuntime()

print(“Total ExecutionTime in seconds:”, run)

Credits:

The complete program was written by P.RaviKumar under the supervision of Professor Rage Uday Kiran.

Mine()→ None
Main program start with extracting the periodic frequent items from the database and performs prefix equiv-
alence to form the combinations and generates partial-periodic patterns. :return: None

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

126 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, int]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

printResults()→ None
This function is used to print the results :return: None

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (file) – name of the output file

Returns
None

startMine()→ None
Main program start with extracting the periodic frequent items from the database and performs prefix equiv-
alence to form the combinations and generates partial-periodic patterns. :return: None

2.4. Partial Periodic Pattern Mining 127

PAMI, Release 2024.04.23

GThreePGrowth

class PAMI.partialPeriodicPattern.basic.GThreePGrowth.GThreePGrowth(iFile: str, minPS: int | float
| str, period: int | float | str,
relativePS: bool, sep: str =
'\t')

Bases: _partialPeriodicPatterns

Description
3pgrowth is fundamental approach to mine the partial periodic patterns in temporal database.

Reference
Reference : Discovering Partial Periodic Itemsets in Temporal Databases,SSDBM ‘17: Proceed-
ings of the 29th International Conference on Scientific and Statistical Database ManagementJune
2017 Article No.: 30 Pages 1–6https://doi.org/10.1145/3085504.3085535

Parameters

• iFile – str : Name of the Input file to mine complete set of frequent pattern’s

• oFile – str : Name of the output file to store complete set of frequent patterns

• minPS – float: Minimum partial periodic pattern. . .

• period – float: Minimum partial periodic. . .

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

self.iFile
[file] Name of the Input file or path of the input file

self. oFile
[file] Name of the output file or path of the output file

minPS: float or int or str
The user can specify minPS either in count or proportion of database size. If the program de-
tects the data type of minPS is integer, then it treats minPS is expressed in count. Otherwise,
it will be treated as float. Example: minPS=10 will be treated as integer, while minPS=10.0
will be treated as float

period: float or int or str
The user can specify period either in count or proportion of database size. If the program
detects the data type of period is integer, then it treats period is expressed in count. Otherwise,
it will be treated as float. Example: period=10 will be treated as integer, while period=10.0
will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

self.memoryUSS
[float] To store the total amount of USS memory consumed by the program

self.memoryRSS
[float] To store the total amount of RSS memory consumed by the program

self.startTime:float
To record the start time of the mining process

128 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

self.endTime:float
To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

finalPatterns
[dict] it represents to store the patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets()
Scans the dataset or dataframes and stores in list format

partialPeriodicOneItem()
Extracts the one-frequent patterns from transactions

updateTransactions()
updates the transactions by removing the aperiodic items and sort the transactions with items
by decreasing support

buildTree()
constrcuts the main tree by setting the root node as null

startMine()
main program to mine the partial periodic patterns

2.4. Partial Periodic Pattern Mining 129

PAMI, Release 2024.04.23

Executing the code on terminal:

Format:

>>> python3 PPPGrowth.py <inputFile> <outputFile> <minPS> <period>

Examples:

>>> python3 PPPGrowth.py sampleDB.txt patterns.txt 10.0 2.0

Sample run of the importing code:

from PAMI.periodicFrequentPattern.basic import PPPGrowth as alg

obj = alg.PPPGrowth(iFile, minPS, period)

obj.startMine()

partialPeriodicPatterns = obj.getPatterns()

print("Total number of partial periodic Patterns:", len(partialPeriodicPatterns))

obj.save(oFile)

Df = obj.getPatternInDf()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

130 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Main method where the patterns are mined by constructing tree.

printResults()→ None
this function is used to print the results

save(outFile: str)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

2.4.2 closed

PPPClose

class PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose(iFile, periodicSupport, period,
sep='\t')

Bases: _partialPeriodicPatterns

Description

PPPClose algorithm is used to discover the closed partial periodic patterns in temporal databases. It uses depth-
first search.

2.4. Partial Periodic Pattern Mining 131

PAMI, Release 2024.04.23

Reference
R. Uday Kiran1 , J. N. Venkatesh2 , Philippe Fournier-Viger3 , Masashi Toyoda1 , P. Krishna
Reddy2 and Masaru Kitsuregawa https://www.tkl.iis.u-tokyo.ac.jp/new/uploads/publication_
file/file/799/PAKDD.pdf

Parameters

• iFile – str : Name of the Input file to mine complete set of periodic frequent pattern’s

• oFile – str : Name of the output file to store complete set of periodic frequent pattern’s

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

• iFile – str : Name of the Input file to mine complete set of frequent pattern’s

• oFile – str : Name of the output file to store complete set of frequent patterns

• period – float: Minimum partial periodic. . .

• periodicSupport – float: Minimum partial periodic. . .

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[str] Input file name or path of the input file

oFile
[str] Name of the output file or path of the input file

periodicSupport: int or float or str
The user can specify periodicSupport either in count or proportion of database size. If the
program detects the data type of periodicSupport is integer, then it treats periodicSupport is
expressed in count. Otherwise, it will be treated as float. Example: periodicSupport=10 will
be treated as integer, while periodicSupport=10.0 will be treated as float

period: int or float or str
The user can specify period either in count or proportion of database size. If the program
detects the data type of period is integer, then it treats period is expressed in count. Otherwise,
it will be treated as float. Example: period=10 will be treated as integer, while period=10.0
will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
separator is tab space or . However, the users can override their default separator.

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

finalPatterns: dict
Storing the complete set of patterns in a dictionary variable

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

132 Chapter 2. Temporal Database

https://www.tkl.iis.u-tokyo.ac.jp/new/uploads/publication_file/file/799/PAKDD.pdf
https://www.tkl.iis.u-tokyo.ac.jp/new/uploads/publication_file/file/799/PAKDD.pdf

PAMI, Release 2024.04.23

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

Executing the code on terminal:

Format:

(.venv) $ python3 PPPClose.py <inputFile> <outputFile> <periodicSupport> <period>

Examples:

(.venv) $ python3 PPPClose.py sampleTDB.txt patterns.txt 0.3 0.4

Sample run of the imported code:

from PAMI.partialPeriodicPattern.closed import PPPClose as alg

obj = alg.PPPClose("../basic/sampleTDB.txt", "2", "6")

obj.startMine()

periodicFrequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(periodicFrequentPatterns))

obj.save("patterns")

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)
(continues on next page)

2.4. Partial Periodic Pattern Mining 133

PAMI, Release 2024.04.23

(continued from previous page)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

134 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

mine()

Mining process will start from here

printResults()

To print all the results of execution

save(outFile)
Complete set of frequent patterns will be loaded in to a output file

Parameters
outFile (file) – name of the output file

startMine()

Mining process will start from here

2.4.3 maximal

Max3PGrowth

class PAMI.partialPeriodicPattern.maximal.Max3PGrowth.Max3PGrowth(iFile, periodicSupport, period,
sep='\t')

Bases: _partialPeriodicPatterns

Description
Max3p-Growth algorithm IS to discover maximal periodic-frequent patterns in a temporal
database. It extract the partial periodic patterns from 3p-tree and checks for the maximal property
and stores all the maximal patterns in max3p-tree and extracts the maximal periodic patterns.

Reference
R. Uday Kiran, Yutaka Watanobe, Bhaskar Chaudhury, Koji Zettsu, Masashi Toyoda, Masaru
Kitsuregawa, “Discovering Maximal Periodic-Frequent Patterns in Very Large Temporal
Databases”, IEEE 2020, https://ieeexplore.ieee.org/document/9260063

Parameters

• iFile – str : Name of the Input file to mine complete set of frequent pattern’s

• oFile – str : Name of the output file to store complete set of frequent patterns

• period – float: Minimum partial periodic. . .

• periodicSupport – str: Minimum partial periodic. . .

• maximalTree – str: Minimum partial periodic. . .

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

periodicSupport: float or int or str
The user can specify periodicSupport either in count or proportion of database size. If the
program detects the data type of periodicSupport is integer, then it treats periodicSupport is

2.4. Partial Periodic Pattern Mining 135

https://ieeexplore.ieee.org/document/9260063

PAMI, Release 2024.04.23

expressed in count. Otherwise, it will be treated as float. Example: periodicSupport=10 will
be treated as integer, while periodicSupport=10.0 will be treated as float

period: float or int or str
The user can specify period either in count or proportion of database size. If the program
detects the data type of period is integer, then it treats period is expressed in count. Otherwise,
it will be treated as float. Example: period=10 will be treated as integer, while period=10.0
will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

periodicSupport
[int/float] The user given minimum period-support

period
[int/float] The user given maximum period

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transaction

tree
[class] it represents the Tree class

itemSetCount
[int] it represents the total no of patterns

finalPatterns
[dict] it represents to store the patterns

Methods

startMine()
Mining process will start from here

getFrequentPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

136 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingitemSets(fileName)
Scans the dataset or dataframes and stores in list format

PeriodicFrequentOneItem()
Extracts the one-periodic-frequent patterns from Databases

updateDatabases()
update the Databases by removing aperiodic items and sort the Database by item decreased
support

buildTree()
after updating the Databases ar added into the tree by setting root node as null

startMine()
the main method to run the program

Executing the code on terminal:

Format:

>>> python3 max3prowth.py <inputFile> <outputFile> <periodicSupport>
→˓<period>

Examples:

>>> python3 Max3PGrowth.py sampleTDB.txt patterns.txt 0.3 0.4

Sample run of the importing code:

from PAMI.periodicFrequentPattern.maximal import ThreePGrowth as alg

obj = alg.ThreePGrowth(iFile, periodicSupport, period)

obj.startMine()

partialPeriodicPatterns = obj.partialPeriodicPatterns()

print("Total number of partial periodic Patterns:", len(partialPeriodicPatterns))

obj.save(oFile)

Df = obj.getPatternInDf()

(continues on next page)

2.4. Partial Periodic Pattern Mining 137

PAMI, Release 2024.04.23

(continued from previous page)

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of periodic-frequent patterns after completion of the mining process

Returns
returning periodic-frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

138 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Return type
float

mine()

Mining process will start from this function

printResults()

This function is used to print the results

save(outFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

Parameters
outFile (csv file) – name of the output file

2.4.4 TopK

k3PMiner

class PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner(iFile, k, period, sep='\t')
Bases: partialPeriodicPatterns

Description
k3PMiner is and algorithm to discover top - k partial periodic patterns in a temporal database.

Reference
Palla Likhitha,Rage Uday Kiran, Discovering Top-K Partial Periodic Patterns in Big Temporal
Databases https://dl.acm.org/doi/10.1007/978-3-031-39847-6_28

Parameters

• iFile – str : Name of the Input file to mine complete set of periodic frequent pattern’s

• oFile – str : Name of the output file to store complete set of periodic frequent pattern’s

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

• iFile – str : Name of the Input file to mine complete set of frequent pattern’s

• oFile – str : Name of the output file to store complete set of frequent patterns

• period – str: Minimum partial periodic. . .

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[str] Input file name or path of the input file

k: int
User specified count of top partial periodic patterns

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

oFile
[str] Name of the output file or the path of the output file

2.4. Partial Periodic Pattern Mining 139

https://dl.acm.org/doi/10.1007/978-3-031-39847-6_28

PAMI, Release 2024.04.23

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

finalPatterns: dict
Storing the complete set of patterns in a dictionary variable

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets()
Scans the dataset or dataframes and stores in list format

frequentOneItem()
Generates one frequent patterns

eclatGeneration(candidateList)
It will generate the combinations of frequent items

generateFrequentPatterns(tidList)
It will generate the combinations of frequent items from a list of items

140 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Executing the code on terminal:

Format:

python3 k3PMiner.py <iFile> <oFile> <k> <period>

Examples:

python3 k3PMiner.py sampleDB.txt patterns.txt 10 3

Sample run of the importing code:

. . . code-block:: python

import PAMI.partialPeriodicPattern.topk.k3PMiner as alg

obj = alg.Topk_PPPGrowth(iFile, k, period)

obj.startMine()

partialPeriodicPatterns = obj.getPatterns()

print(“Total number of top partial periodic Patterns:”, len(partialPeriodicPatterns))

obj.save(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print(“Total Memory in USS:”, memUSS)

memRSS = obj.getMemoryRSS()

print(“Total Memory in RSS”, memRSS)

run = obj.getRuntime()

print(“Total ExecutionTime in seconds:”, run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

2.4. Partial Periodic Pattern Mining 141

PAMI, Release 2024.04.23

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()

Main function of the program

printResults()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (file) – name of the output file

startMine()

Main function of the program

2.4.5 Cuda

Pending

142 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

2.5 Periodic correlated pattern mining

Periodic correlated pattern mining is a data mining task aimed at discovering patterns within a temporal database that
exhibit both periodic behavior and correlation between their occurrences. Unlike traditional periodic pattern mining,
which focuses solely on periodicity, periodic correlated pattern mining considers the relationship between pattern oc-
currences over time. These patterns are characterized by their recurring nature and the presence of correlations between
occurrences at specific time intervals.

Applications: Retail Sales Analysis, Web Usage Mining, Healthcare Monitoring.

Periodic correlated pattern mining is a data mining task aimed at discovering patterns within a temporal database that
exhibit both periodic behavior and correlation between their occurrences. Unlike traditional periodic pattern mining,
which focuses solely on periodicity, periodic correlated pattern mining considers the relationship between pattern oc-
currences over time. These patterns are characterized by their recurring nature and the presence of correlations between
occurrences at specific time intervals.

Applications: Retail Sales Analysis, Web Usage Mining, Healthcare Monitoring.

2.5.1 Basic

EPCPGrowth

class PAMI.periodicCorrelatedPattern.basic.EPCPGrowth.EPCPGrowth(iFile, minSup, minAllConf ,
maxPer, maxPerAllConf ,
sep='\t')

Bases: _periodicCorrelatedPatterns

Description
EPCPGrowth is an algorithm to discover periodic-Correlated patterns in a temporal database.

Reference
http://www.tkl.iis.u-tokyo.ac.jp/new/uploads/publication_file/file/897/Venkatesh2018_
Chapter_DiscoveringPeriodic-Correlated.pdf

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup
[int or float or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

minAllConf
[int or float or str] The user can specify minAllConf either in count or proportion of database
size. If the program detects the data type of minAllConf is integer, then it treats minAllCOnf
is expressed in count. Otherwise, it will be treated as float. Example: minAllCOnf=10 will
be treated as integer, while minAllConf=10.0 will be treated as float

maxPer
[int or float or str] The user can specify maxPer either in count or proportion of database size.
If the program detects the data type of maxPer is integer, then it treats maxPer is expressed in

2.5. Periodic correlated pattern mining 143

http://www.tkl.iis.u-tokyo.ac.jp/new/uploads/publication_file/file/897/Venkatesh2018_Chapter_DiscoveringPeriodic-Correlated.pdf
http://www.tkl.iis.u-tokyo.ac.jp/new/uploads/publication_file/file/897/Venkatesh2018_Chapter_DiscoveringPeriodic-Correlated.pdf

PAMI, Release 2024.04.23

count. Otherwise, it will be treated as float. Example: maxPer=10 will be treated as integer,
while maxPer=10.0 will be treated as float

maxPerAllConf
[int or float or str] The user can specify maxPerAllConf either in count or proportion of
database size. If the program detects the data type of maaxPerAllConf is integer, then it
treats maxPerAllConf is expressed in count. Otherwise, it will be treated as float. Example :
maxPerAllConf=10 will be treated as integer, while maxPerAllConf=10.0 will be treated as
float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] To represent the total no of transaction

tree
[class] To represents the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

144 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

PeriodicFrequentOneItem()
Extracts the one-periodic-frequent patterns from database

updateDatabases()
Update the database by removing aperiodic items and sort the Database by item decreased
support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

convert()
to convert the user specified value

Executing the code on terminal:

Format:

>>> python3 PFPGrowth.py <inputFile> <outputFile> <minSup> <maxPer>

Examples:

>>> python3 PFPGrowth.py sampleTDB.txt patterns.txt 0.3 0.4

Sample run of importing the code:

from PAMI.periodicCorrelatedPattern.basic import EPCPGrowth as alg

obj = alg.EPCPGrowth(iFile, minSup, minAllCOnf, maxPer, maxPerAllConf)

obj.startMine()

periodicCorrelatedPatterns = obj.getPatterns()

print("Total number of Periodic Frequent Patterns:",␣
→˓len(periodicCorrelatedPatterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)
(continues on next page)

2.5. Periodic correlated pattern mining 145

PAMI, Release 2024.04.23

(continued from previous page)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ dict
Function to send the set of periodic-frequent patterns after completion of the mining process

Returns
returning periodic-frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

146 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

printResults()→ None
This function is used to print thr results

save(outFile: str)→ None
Complete set of periodic-frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

startMine()→ None
Mining process will start from this function

2.6 Stable Periodic Pattern Mining

Stable Periodic Pattern Mining (SPPM) is a data mining task focused on discovering patterns within transactional
databases that exhibit consistent and predictable periodic behavior. Unlike traditional periodic pattern mining ap-
proaches that may identify patterns with varying periodicity, SPPM specifically targets patterns with stable intervals
between successive occurrences. These patterns, known as Stable Periodic-Frequent Patterns (SPPs), demonstrate sta-
ble repetition over time, making them more reliable and suitable for predictive modeling and analysis. SPPM aims to
identify SPPs that adhere to user-defined constraints on periodicity stability, enabling the discovery of patterns with
consistent periodic behavior.

Applications: Traffic Flow Optimization, Financial Market Analysis, Manufacturing Process Optimization.

Stable Periodic Pattern Mining (SPPM) is a data mining task focused on discovering patterns within transactional
databases that exhibit consistent and predictable periodic behavior. Unlike traditional periodic pattern mining ap-
proaches that may identify patterns with varying periodicity, SPPM specifically targets patterns with stable intervals
between successive occurrences. These patterns, known as Stable Periodic-Frequent Patterns (SPPs), demonstrate sta-
ble repetition over time, making them more reliable and suitable for predictive modeling and analysis. SPPM aims to
identify SPPs that adhere to user-defined constraints on periodicity stability, enabling the discovery of patterns with
consistent periodic behavior.

Applications: Traffic Flow Optimization, Financial Market Analysis, Manufacturing Process Optimization.

2.6.1 Basic

SPPGrowth

class PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth(inputFile, minSup, maxPer,
maxLa, sep='\t')

Bases: object

Description
Stable periodic pattern mining aims to dicover all interesting patterns in a temporal database using
three contraints minimum support, maximum period and maximum lability, that have support no
less than the user-specified minimum support constraint and lability no greater than maximum
lability.

Reference
Dao, H.N. et al. (2022). Towards Efficient Discovery of Stable Periodic Patterns in Big Colum-
nar Temporal Databases. In: Fujita, H., Fournier-Viger, P., Ali, M., Wang, Y. (eds) Advances
and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence. IEA/AIE
2022. Lecture Notes in Computer Science(), vol 13343. Springer, Cham. https://doi.org/10.
1007/978-3-031-08530-7_70

2.6. Stable Periodic Pattern Mining 147

https://doi.org/10.1007/978-3-031-08530-7_70
https://doi.org/10.1007/978-3-031-08530-7_70

PAMI, Release 2024.04.23

Parameters

• iFile – str :

Name of the Input file to mine complete set of frequent pattern’s

• oFile – str : Name of the output file to store complete set of frequent patterns

• minSup – str: Minimum number of frequent patterns to be included in the output file.

• maxLa – float: Minimum number of . . .

• maxPer – float: Maximum number of frequent patterns to be included in the output file.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup: int or float or str
The user can specify minSup either in count or proportion of database size. If the program
detects the data type of minSup is integer, then it treats minSup is expressed in count. Oth-
erwise, it will be treated as float. Example: minSup=10 will be treated as integer, while
minSup=10.0 will be treated as float

maxPer
[int or float or str] The user can specify maxPer either in count or proportion of database size.
If the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count. Otherwise, it will be treated as float. Example: maxPer=10 will be treated as integer,
while maxPer=10.0 will be treated as float

maxLa
[int or float or str] The user can specify maxLa either in count or proportion of database size.
If the program detects the data type of maxLa is integer, then it treats maxLa is expressed in
count. Otherwise, it will be treated as float. Example: maxLa=10 will be treated as integer,
while maxLa=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

148 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

lno
[int] To represent the total no of transaction

tree
[class] To represents the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

PeriodicFrequentOneItem()
Extracts the one-periodic-frequent patterns from database

updateDatabases()
Update the database by removing aperiodic items and sort the Database by item decreased
support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

convert()
to convert the user specified value

2.6. Stable Periodic Pattern Mining 149

PAMI, Release 2024.04.23

Methods to execute code on terminal

Format:

(.venv) $ python3 topk.py <inputFile> <outputFile> <minSup> <maxPer> <maxLa>

Example usage :

(.venv) $ python3 topk.py sampleTDB.txt patterns.txt 0.3 0.4 0.3

Note: constraints will be considered in percentage of database transactions

Importing this algorithm into a python program

from PAMI.stablePeriodicFrequentPattern.basic import topk as alg

obj = alg.topk(iFile, minSup, maxPer, maxLa)

obj.startMine()

Patterns = obj.getPatterns()

print("Total number of Stable Periodic Frequent Patterns:", len(Patterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

150 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

SPPList = {}

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of periodic-frequent patterns after completion of the mining process

Returns
returning periodic-frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()

Mining process will start from this function

printResults()

This function is used to print the results

save(outFile)
Complete set of periodic-frequent patterns will be loaded in to an output file

2.6. Stable Periodic Pattern Mining 151

PAMI, Release 2024.04.23

Parameters
outFile (csv file) – name of the output file

startMine()

Mining process will start from this function

SPPEclat

class PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat(inputFile, minSup, maxPer,
maxLa, sep='\t')

Bases: _stablePeriodicFrequentPatterns

Description
Stable periodic pattern mining aims to dicover all interesting patterns in a temporal database using
three contraints minimum support, maximum period and maximum lability, that have support no
less than the user-specified minimum support constraint and lability no greater than maximum
lability.

Reference
Fournier-Viger, P., Yang, P., Lin, J. C.-W., Kiran, U. (2019). Discovering Stable Periodic-
Frequent Patterns in Transactional Data. Proc. 32nd Intern. Conf. on Industrial, Engineering and
Other Applications of Applied Intelligent Systems (IEA AIE 2019), Springer LNAI, pp. 230-244

Parameters

• iFile – str : Name of the Input file to mine complete set of stable periodic Frequent Pattern.

• oFile – str : Name of the output file to store complete set of stable periodic Frequent Pattern.

• minSup – float or int or str : The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float. Example: minSup=10 will be
treated as integer, while minSup=10.0 will be treated as float

• itemSup – int or float : Frequency of an item

• maxLa – float : minimum loss of a pattern

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup
[int or float or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

maxPer
[int or float or str] The user can specify maxPer either in count or proportion of database size.
If the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count. Otherwise, it will be treated as float. Example: maxPer=10 will be treated as integer,
while maxPer=10.0 will be treated as float

152 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

maxLa
[int or float or str] The user can specify maxLa either in count or proportion of database size.
If the program detects the data type of maxLa is integer, then it treats maxLa is expressed in
count. Otherwise, it will be treated as float. Example: maxLa=10 will be treated as integer,
while maxLa=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

itemSetCount
[int] it represents the total no of patterns

finalPatterns
[dict] it represents to store the patterns

tidList
[dict] stores the timestamps of an item

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to an output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

2.6. Stable Periodic Pattern Mining 153

PAMI, Release 2024.04.23

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets()
Scan the database and store the items with their timestamps which are periodic frequent

calculateLa()
Calculates the support and period for a list of timestamps.

Generation()
Used to implement prefix class equivalence method to generate the periodic patterns recur-
sively

Methods to execute code on terminal

Format:

(.venv) $ python3 basic.py <inputFile> <outputFile> <minSup> <maxPer> <maxLa>

Example usage:

(.venv) $ python3 basic.py sampleDB.txt patterns.txt 10.0 4.0 2.0

.. note:: constraints will be considered in percentage of database␣
→˓transactions

Importing this algorithm into a python program

. . . code-block:: python

from PAMI.stablePeriodicFrequentPattern.basic import basic as alg

obj = alg.PFPECLAT(“../basic/sampleTDB.txt”, 5, 3, 3)

obj.startMine()

Patterns = obj.getPatterns()

print(“Total number of Stable Periodic Frequent Patterns:”, len(Patterns))

obj.save(“patterns”)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print(“Total Memory in USS:”, memUSS)

memRSS = obj.getMemoryRSS()

print(“Total Memory in RSS”, memRSS)

run = obj.getRuntime()

print(“Total ExecutionTime in seconds:”, run)

154 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function :return:
returning RSS memory consumed by the mining process :rtype: float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function :return:
returning USS memory consumed by the mining process :rtype: float

getPatterns()

Function to return the set of stable periodic-frequent patterns after completion of the mining process

Returns
returning stable periodic-frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()

Method to start the mining of patterns

printResults()

This function is used to print the results

save(outFile)
Complete set of periodic-frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

startMine()

Method to start the mining of patterns

2.6. Stable Periodic Pattern Mining 155

PAMI, Release 2024.04.23

2.6.2 TopK

TSPIN

class PAMI.stablePeriodicFrequentPattern.topK.TSPIN.TSPIN(iFile, maxPer, maxLa, k, sep='\t')
Bases: _stablePeriodicFrequentPatterns

Description
TSPIN is an algorithm to discover top stable periodic-frequent patterns in a transactional
database.

Reference
Fournier-Viger, P., Wang, Y., Yang, P. et al. TSPIN: mining top-k stable periodic patterns. Appl
Intell 52, 6917–6938 (2022). https://doi.org/10.1007/s10489-020-02181-6

Parameters

• iFile – str : Name of the Input file to mine complete set of frequent pattern’s

• oFile – str : Name of the output file to store complete set of frequent patterns

• maxPer – float: Maximum number of frequent patterns to be included in the output file.

• maxLa – str: Maximum number of frequent patterns to be included in the output file.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

maxPer
[int or float or str] The user can specify maxPer either in count or proportion of database size.
If the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count. Otherwise, it will be treated as float. Example: maxPer=10 will be treated as integer,
while maxPer=10.0 will be treated as float

maxLa
[int or float or str] The user can specify maxLa either in count or proportion of database size.
If the program detects the data type of maxLa is integer, then it treats maxLa is expressed in
count. Otherwise, it will be treated as float. Example: maxLa=10 will be treated as integer,
while maxLa=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime
[float] To record the start time of the mining process

156 Chapter 2. Temporal Database

https://doi.org/10.1007/s10489-020-02181-6

PAMI, Release 2024.04.23

endTime
[float] To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] To represent the total no of transaction

tree
[class] To represents the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

PeriodicFrequentOneItem()
Extracts the one-periodic-frequent patterns from database

updateDatabases()
Update the database by removing aperiodic items and sort the Database by item decreased
support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

convert()
to convert the user specified value

2.6. Stable Periodic Pattern Mining 157

PAMI, Release 2024.04.23

Methods to execute code on terminal

Format:

>>> python3 TSPIN.py <inputFile> <outputFile> <maxPer> <maxLa>

Example:

>>> python3 TSPIN.py sampleTDB.txt patterns.txt 0.3 0.4 0.6

Note: maxPer, maxLa and k will be considered in percentage of database transactions

Importing this algorithm into a python program

from PAMI.stablePeriodicFrequentPattern.basic import TSPIN as alg

obj = alg.TSPIN(iFile, maxPer, maxLa, k)

obj.startMine()

stablePeriodicFrequentPatterns = obj.getPatterns()

print("Total number of Periodic Frequent Patterns:",␣
→˓len(stablePeriodicFrequentPatterns))

obj.savePatterns(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

158 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ dict
Function to send the set of periodic-frequent patterns after completion of the mining process

Returns
returning periodic-frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of periodic-frequent patterns will be loaded in to an output file

Parameters
outFile (file) – name of the output file

startMine()→ None
Mining process will start from this function

2.6. Stable Periodic Pattern Mining 159

PAMI, Release 2024.04.23

2.7 Recurring Pattern Mining

Recurring patterns refer to patterns within a dataset that demonstrate periodic behavior occurring only at specific time
intervals within a series. The goal of recurring pattern mining is to discover meaningful and potentially predictive
patterns that can provide insights into the underlying behavior of the time series data

Applications: Anomaly Detection, Predictive Maintenance, Financial Forecasting.

Recurring patterns refer to patterns within a dataset that demonstrate periodic behavior occurring only at specific time
intervals within a series. The goal of recurring pattern mining is to discover meaningful and potentially predictive
patterns that can provide insights into the underlying behavior of the time series data

Applications: Anomaly Detection, Predictive Maintenance, Financial Forecasting.

2.7.1 Basic

RPGrowth

class PAMI.recurringPattern.basic.RPGrowth.RPGrowth(iFile, maxPer, minPS, minRec, sep='\t')
Bases: _recurringPatterns

Description
RPGrowth is one of the fundamental algorithm to discover recurring patterns in a transactional
database.

Reference

R. Uday Kiran†, Haichuan Shang†, Masashi Toyoda† and Masaru Kitsure-
gawa† Discovering Recurring Patterns in Time Series,https://www.tkl.iis.u-
tokyo.ac.jp/new/uploads/publication_file/file/693/Paper%2023.pdf

Parameters

• iFile – str : Name of the Input file to mine complete set of Recurring patterns

• oFile – str : Name of the output file to store complete set of Recurring patterns

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

• minPs – str : It could potentially represent a minimum parallelism percentage or some other
value related to parallel processing.

• maxPer – float : minRec It represent a maximum percentage or some other numeric value.

• minRec – str : It could represent a minimum recommended value or some other string-based
setting.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

maxPer
[int or float or str] The user can specify maxPer either in count or proportion of database size.
If the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count. Otherwise, it will be treated as float. Example: maxPer=10 will be treated as integer,
while maxPer=10.0 will be treated as float

160 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

minPS
[int or float or str] The user can specify minPS either in count or proportion of database size.
If the program detects the data type of minPS is integer, then it treats minPS is expressed in
count. Otherwise, it will be treated as float. Example: minPS=10 will be treated as integer,
while minPS=10.0 will be treated as float

minRec
[int or float or str] The user has to specify minRec in count.

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] To represent the total no of transaction

tree
[class] To represents the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

2.7. Recurring Pattern Mining 161

PAMI, Release 2024.04.23

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

OneItems()
Extracts the possible recurring items of size one from database

updateDatabases()
Update the database by removing non recurring items and sort the Database by item de-
creased support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

convert()
to convert the user specified value

Methods to execute code on terminal

Format:

(.venv) $ python3 RPGrowth.py <inputFile> <outputFile> <maxPer> <minPS> <minRec>

Example usage:

(.venv) $ python3 RPGrowth.py sampleTDB.txt patterns.txt 0.3 0.4 2

.. note:: maxPer and minPS will be considered in percentage of database␣
→˓transactions

Importing this algorithm into a python program

from PAMI.periodicFrequentPattern.recurring import RPGrowth as alg

obj = alg.RPGrowth(iFile, maxPer, minPS, minRec)

obj.startMine()

periodicFrequentPatterns = obj.getPatterns()

print("Total number of Periodic Frequent Patterns:", len(periodicFrequentPatterns))

obj.savePatterns(oFile)

Df = obj.getPatternsAsDataFrame()
(continues on next page)

162 Chapter 2. Temporal Database

PAMI, Release 2024.04.23

(continued from previous page)

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by C. Saideep under the supervision of Professor Rage Uday Kiran.

Mine()

Mining process will start from this function

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of periodic-frequent patterns after completion of the mining process

Returns
returning periodic-frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

2.7. Recurring Pattern Mining 163

PAMI, Release 2024.04.23

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

printResults()

To print all the results of execution

save(outFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

Parameters
outFile (file) – name of the output file.

startMine()

Mining process will start from this function

164 Chapter 2. Temporal Database

CHAPTER

THREE

GEO-REFERENCED PATTERN MINING

A geo-referenced database represents the data gathered by a set of fixed sensors observing a particular
phenomenon over a time period. It is a combination of spatial database and transactional/temporal/utility
database .

Types of Geo-referenced databases

• Geo-referenced transactional databases

• Geo-referenced temporal databases

• Geo-referenced utility database

Basic topics

• Location/spatial database

• Neighborhood database

1. Geo-referenced transactional database

A transactional database is said to be a geo-referenced transactional database if it contains
spatial items. The format of this database is similar to that of transactional database . An
example of a geo-referenced transactional database is as follows:

TID Items
1 Point(0 0) Point(0 1) Point(1 0)
2 Point(0 0) Point(0 2) Point(5 0)
3 Point(5 0)
4 Point(4 0) Point(5 0)

Note: The rules to create a geo-referenced transactional database are same as the rules to
create a transactional database. In other words, the format of creating a transaction in a
geo-referential database is:

>>> spatialItem1<sep>spatialItem2<sep>...<sep>spatialItemN

An example:

Point(0 0) Point(0 1) Point(1 0)

Point(0 0) Point(0 2) Point(5 0)

Point(5 0)

Point(4 0) Point(5 0)

2. Geo-referential temporal database

165

PAMI, Release 2024.04.23

A temporal database is said to be a geo-referential temporal database if it contains spatial
items. The format of this database is similar to that of temporal database . An example of
a geo-referential temporal database is as follows:

TID Timestamp Items
1 1 Point(0 0) Point(0 1) Point(1 0)
2 2 Point(0 0) Point(0 2) Point(5 0)
3 4 Point(5 0)
4 5 Point(4 0) Point(5 0)

Note: The rules to create geo-referential temporal database are same as the rules to create
a temporal database. In other words, the format to create geo-referential temporal database
is as follows:

>>> timestamp<sep>spatialItem1<sep>spatialItem2<sep>...<sep>
→˓spatialItemN

An example:

1 Point(0 0) Point(0 1) Point(1 0)

2 Point(0 0) Point(0 2) Point(5 0)

4 Point(5 0)

5 Point(4 0) Point(5 0)

3. Geo-referential utility database

A utility database is said to be a geo-referential utility database if it contains spatial items.
The format of this database is similar to that of utility database . An example of a geo-
referential utility database is as follows:

TID Transactions (items and their prices)
1 (Point(0 0),100) (Point(0 1),42) (Point(1 0), 20)
2 (Point(0 0), 100) (Point(0 2), 10) (Point(5 0), 30)
3 (Point(5 0), 30)
4 (Point(4 0),30), (Point(5 0),40)

Note: The rules to create geo-referential utility database are same as the rules to create a utility database.
In other words, the format to create geo-referential utility database is as follows:

>>> timestamp<sep>spatialItem1<sep>spatialItem2<sep>...<sep>spatialItemN :␣
→˓total utility : utilityA<sep>utilityB<sep>...<sep>utilityN

An example:

1 Point(0 0) Point(0 1) Point(1 0):162:100 42 20

2 Point(0 0) Point(0 2) Point(5 0):140:100 10 30

4 Point(5 0):30:30

5 Point(4 0) Point(5 0):70:30 40

166 Chapter 3. Geo-referenced Pattern Mining

PAMI, Release 2024.04.23

3.1 Geo-referenced Frequent Pattern Mining

Geo-referenced frequent pattern mining is the process of discovering frequent patterns, associations, or relationships
among spatially and temporally referenced data. It involves analyzing datasets that contain geographic coordinates,
timestamps, and possibly other attributes related to spatial and temporal events.

Applications: Location-Based Services , Environmental Monitoring and Conservation, Tourism and Hospitality.

Geo-referenced frequent pattern mining is the process of discovering frequent patterns, associations, or relationships
among spatially and temporally referenced data. It involves analyzing datasets that contain geographic coordinates,
timestamps, and possibly other attributes related to spatial and temporal events.

Applications: Location-Based Services , Environmental Monitoring and Conservation, Tourism and Hospitality.

3.1.1 Basic

SpatialECLAT

class PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT(iFile, nFile, minSup,
sep='\t')

Bases: _spatialFrequentPatterns

Description
Spatial Eclat is a Extension of ECLAT algorithm,which stands for Equivalence Class Clustering
and bottom-up Lattice Traversal.It is one of the popular methods of Association Rule mining. It
is a more efficient and scalable version of the Apriori algorithm.

Reference
Rage, Uday & Fournier Viger, Philippe & Zettsu, Koji & Toyoda, Masashi & Kitsuregawa,
Masaru. (2020). Discovering Frequent Spatial Patterns in Very Large Spatiotemporal Databases.

Parameters

• iFile – str : Name of the Input file to mine complete set of Geo-referenced frequent patterns

• oFile – str : Name of the output file to store complete set of Geo-referenced frequent patterns

• minSup – int or float or str : The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float.

• maxPer – float : The user can specify maxPer in count or proportion of database size. If
the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count.

• nFile – str : Name of the input file to mine complete set of Geo-referenced frequent patterns

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[str] Input file name or path of the input file

nFile
[str] Name of Neighbourhood file name

3.1. Geo-referenced Frequent Pattern Mining 167

PAMI, Release 2024.04.23

minSup
[int or float or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

finalPatterns
[dict] Storing the complete set of patterns in a dictionary variable

oFile
[str] Name of the output file to store complete set of frequent patterns

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the complete set of transactions available in the input database/file

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(iFileName)
Storing the complete transactions of the database/input file in a database variable

frequentOneItem()
Generating one frequent patterns

dictKeysToInt(iList)
Converting dictionary keys to integer elements

eclatGeneration(cList)
It will generate the combinations of frequent items

168 Chapter 3. Geo-referenced Pattern Mining

PAMI, Release 2024.04.23

generateSpatialFrequentPatterns(tidList)
It will generate the combinations of frequent items from a list of items

convert(value)
To convert the given user specified value

getNeighbourItems(keySet)
A function to get common neighbours of a itemSet

mapNeighbours(file)
A function to map items to their neighbours

Executing the code on terminal :

Format:

(.venv) $ python3 SpatialECLAT.py <inputFile> <outputFile> <neighbourFile> <minSup>

Example Usage:

(.venv) $ python3 SpatialECLAT.py sampleTDB.txt output.txt sampleN.txt 0.5

Note: minSup will be considered in percentage of database transactions

Sample run of importing the code :

from PAMI.georeferencedFrequentPattern.basic import SpatialECLAT as alg

obj = alg.SpatialECLAT("sampleTDB.txt", "sampleN.txt", 5)

obj.mine()

spatialFrequentPatterns = obj.getPatterns()

print("Total number of Spatial Frequent Patterns:", len(spatialFrequentPatterns))

obj.save("outFile")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

3.1. Geo-referenced Frequent Pattern Mining 169

PAMI, Release 2024.04.23

Credits:

The complete program was written by B.Sai Chitra under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()

Frequent pattern mining process will start from here

printResults()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to a output file

Parameters
outFile (csv file) – name of the output file

170 Chapter 3. Geo-referenced Pattern Mining

PAMI, Release 2024.04.23

startMine()

Frequent pattern mining process will start from here

FSPGrowth

3.2 Geo-referenced Periodic Frequent Pattern Mining

Geo-referenced periodic frequent patterns describe consistent patterns of activity or events that occur in specific geo-
graphic areas at regular time intervals. These patterns may reveal recurring trends, behaviors, or phenomena in spatially
and temporally referenced data, such as movement patterns, environmental changes, or human activities

Applications:Transportation and Logistics, Environmental Monitoring and Conservation, Urban Planning and Infras-
tructure Management.

Geo-referenced periodic frequent patterns describe consistent patterns of activity or events that occur in specific geo-
graphic areas at regular time intervals. These patterns may reveal recurring trends, behaviors, or phenomena in spatially
and temporally referenced data, such as movement patterns, environmental changes, or human activities

Applications:Transportation and Logistics, Environmental Monitoring and Conservation, Urban Planning and Infras-
tructure Management.

3.2.1 Basic

GPFPMiner

class PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner(iFile, nFile,
minSup, maxPer,
sep='\t')

Bases: _geoReferencedPeriodicFrequentPatterns

Description
GPFPMiner is an Extension of ÉCLAT algorithm,which stands for Equivalence Class Clustering
and

bottom-up Lattice Traversal to mine the geo referenced periodic frequent patterns.

Reference
Parameters

• iFile – str Name of the Input file to mine complete set of Geo-referenced periodic frequent
patterns

• oFile – str Name of the output file to store complete set of Geo-referenced periodic frequent
patterns

• minSup – int or float or str The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float.

• maxPer – float The user can specify maxPer in count or proportion of database size. If the
program detects the data type of maxPer is integer, then it treats maxPer is expressed in count.

• nFile – str Name of the input file to mine complete set of Geo-referenced periodic frequent
patterns

• sep – str This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

3.2. Geo-referenced Periodic Frequent Pattern Mining 171

PAMI, Release 2024.04.23

Attributes

iFile
[str] Input file name or path of the input file

nFile
[str] Name of Neighbourhood file name

minSup
[float or int or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

maxPer
[float or int or str] The user can specify maxPer either in count or proportion of database size.
If the program detects the data type of maxPer is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: maxPer=10 will be treated as integer,
while maxPer=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
separator is tab space or . However, the users can override their default separator.

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

finalPatterns
[dict] Storing the complete set of patterns in a dictionary variable

oFile
[str] Name of the output file to store complete set of frequent patterns

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the complete set of transactions available in the input database/file

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrames()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

172 Chapter 3. Geo-referenced Pattern Mining

PAMI, Release 2024.04.23

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(iFileName)
Storing the complete transactions of the database/input file in a database variable

frequentOneItem()
Generating one frequent patterns

convert(value)
To convert the given user specified value

getNeighbourItems(keySet)
A function to get common neighbours of a itemSet

mapNeighbours(file)
A function to map items to their neighbours

Executing the code on terminal :

Format:

(.venv) $ python3 GPFPMiner.py <inputFile> <outputFile> <neighbourFile> <minSup>
→˓<maxPer>

Example Usage:

(.venv) $ python3 GPFPMiner.py sampleTDB.txt output.txt sampleN.txt 0.5 0.3

Note: minSup & maxPer will be considered in percentage of database transactions

Sample run of importing the code :

import PAMI.geoReferencedPeridicFrequentPattern.GPFPMiner as alg

obj = alg.GPFPMiner("sampleTDB.txt", "sampleN.txt", 5, 3)

obj.mine()

Patterns = obj.getPatterns()

print("Total number of Geo Referenced Periodic-Frequent Patterns:", len(Patterns))

obj.save("outFile")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)
(continues on next page)

3.2. Geo-referenced Periodic Frequent Pattern Mining 173

PAMI, Release 2024.04.23

(continued from previous page)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.RaviKumar under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function :return:
returning RSS memory consumed by the mining process :rtype: float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mapNeighbours()

A function to map items to their Neighbours

174 Chapter 3. Geo-referenced Pattern Mining

PAMI, Release 2024.04.23

mine()

Frequent pattern mining process will start from here

printResults()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to a output file

Parameters
outFile (csv file) – name of the output file

startMine()

Frequent pattern mining process will start from here

3.3 Geo-referenced Partial Periodic Pattern Mining

Geo-referenced partial periodic frequent pattern mining is a data mining technique that aims to discover recurring
spatial-temporal patterns in datasets where events occur periodically but may not always cover the entire time period
of interest. In other words, it focuses on identifying patterns that exhibit periodicity in both space and time, but allow
for variations or partial occurrences within each period.

Applications: Agricultural Monitoring and Crop Management, Public Health Surveillance, Environmental Monitoring
and Disaster Management.

Geo-referenced partial periodic frequent pattern mining is a data mining technique that aims to discover recurring
spatial-temporal patterns in datasets where events occur periodically but may not always cover the entire time period
of interest. In other words, it focuses on identifying patterns that exhibit periodicity in both space and time, but allow
for variations or partial occurrences within each period.

Applications: Agricultural Monitoring and Crop Management, Public Health Surveillance, Environmental Monitoring
and Disaster Management.

3.3.1 Basic

STEclat

class PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat(iFile, nFile, minPS,
maxIAT , sep='\t')

Bases: _partialPeriodicSpatialPatterns

Description
STEclat is one of the fundamental algorithm to discover georefereneced partial periodic-frequent
patterns in a transactional database.

Reference
R. Uday Kiran, C. Saideep, K. Zettsu, M. Toyoda, M. Kitsuregawa and P. Krishna Reddy, “Dis-
covering Partial Periodic Spatial Patterns in Spatiotemporal Databases,” 2019 IEEE International

Conference on Big Data (Big Data), 2019, pp. 233-238, doi: 10.1109/Big-
Data47090.2019.9005693.

Parameters

• iFile – str : Name of the Input file to mine complete set of Geo-referenced Partial Periodic
patterns

3.3. Geo-referenced Partial Periodic Pattern Mining 175

PAMI, Release 2024.04.23

• oFile – str : Name of the output file to store complete set of Geo-referenced Partial Periodic
patterns

• minPS – int or float or str : The user can specify minPS either in count or proportion of
database size. If the program detects the data type of minPS is integer, then it treats minPS
is expressed in count. Otherwise, it will be treated as float.

• maxIAT – int or float or str : The user can specify maxIAT either in count or proportion
of database size. If the program detects the data type of maxIAT is integer, then it treats
maxIAT is expressed in count. Otherwise, it will be treated as float.

• nFile – str : Name of the input file to mine complete set of Geo-referenced Partial Periodic
patterns

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[str] Input file name or path of the input file

nFile
[str] Name of Neighbourhood file name

maxIAT
[float or int or str] The user can specify maxIAT either in count or proportion of database
size. If the program detects the data type of maxIAT is integer, then it treats maxIAT is
expressed in count. Otherwise, it will be treated as float. Example: maxIAT=10 will be
treated as integer, while maxIAT=10.0 will be treated as float

minPS
[float or int or str] The user can specify minPS either in count or proportion of database size.
If the program detects the data type of minPS is integer, then it treats minPS is expressed in
count. Otherwise, it will be treated as float. Example: minPS=10 will be treated as integer,
while minPS=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
separator is tab space or . However, the users can override their default separator.

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

finalPatterns
[dict] Storing the complete set of patterns in a dictionary variable

oFile
[str] Name of the output file to store complete set of frequent patterns

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the complete set of transactions available in the input database/file

Methods

176 Chapter 3. Geo-referenced Pattern Mining

PAMI, Release 2024.04.23

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrames()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(iFileName)
Storing the complete transactions of the database/input file in a database variable

frequentOneItem()
Generating one frequent patterns

convert(value):
To convert the given user specified value

getNeighbourItems(keySet)
A function to get common neighbours of a itemSet

mapNeighbours(file)
A function to map items to their neighbours

Executing the code on terminal :

Format:

(.venv) $ python3 STEclat.py <inputFile> <outputFile> <neighbourFile> <minPS>
→˓<maxIAT>

Example Usage:

(.venv) $ python3 STEclat.py sampleTDB.txt output.txt sampleN.txt 0.2 0.5

Note: maxIAT & minPS will be considered in percentage of database transactions

3.3. Geo-referenced Partial Periodic Pattern Mining 177

PAMI, Release 2024.04.23

Sample run of importing the code :

import PAMI.georeferencedPartialPeriodicPattern.STEclat as alg

obj = alg.STEclat("sampleTDB.txt", "sampleN.txt", 3, 4)

obj.mine()

partialPeriodicSpatialPatterns = obj.getPatterns()

print("Total number of Periodic Spatial Frequent Patterns:",␣
→˓len(partialPeriodicSpatialPatterns))

obj.save("outFile")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P. Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

178 Chapter 3. Geo-referenced Pattern Mining

PAMI, Release 2024.04.23

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mapNeighbours()

A function to map items to their Neighbours

mine()

Frequent pattern mining process will start from here

printResults()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

startMine()

Frequent pattern mining process will start from here

3.3. Geo-referenced Partial Periodic Pattern Mining 179

PAMI, Release 2024.04.23

180 Chapter 3. Geo-referenced Pattern Mining

CHAPTER

FOUR

UTILITY PATTERN MINING

A transactional/temporal database represents a binary database. It is because the items in these databases
have values either 1 or 0. In contrast, a utility database is a non-binary database. In fact, a utility database
is a quantitative database containing items and their utility values.

Utility databases are naturally produced by the real-world applications. Henceforth, most forms of the
databases, such as transactional and temporal databases, are generated from utility databases.

In the utility database, the items have external utility values and internal utility values. External utility
values, like prices of items in a supermarket, do not vary in the entire data. Internal utility values, like the
number of items purchased by each customer, vary for every transaction in the database. The utility of an
item in a transaction represents the product of its internal and external utility values.

Types

• Utility transactional databases

• Utility temporal databases

Utility transactional databases

Description

A utility transactional database consists of a transactional identifier (tid), items, and their corre-
sponding utility values in a transaction. A sample utility transactional database generated from
the set of items, I={Bread, Jam, Butter, Pen, Books, Bat}, is shown in below table:

TID Transactions (items and their prices)
1 (Bread,1$), (Jam,2$), (Butter, 1.5$)
2 (Bat, 100$), (Ball, 10$)
3 (Pen, 2$), (Book, 5$)

Format of a utility transactional database

The utility transactional database must exist in the following format:

>>> itemA<seo>itemB<sep>...<sep>itemN:total utility:utilityA
→˓<sep>utilityB<sep>...<sep>utilityN

The ‘total utility’ represents the total utility value of items in a transaction.

Rules to create a utility transactional database

• The default separator, i.e., , used in PAMI is tab space (or t). However, the users can override the
default separator with their choice. Since spatial objects, such as Point, Line, and Polygon, are repre-

181

PAMI, Release 2024.04.23

sented using space and comma, usage of tab space facilitates us to effectively distinguish the spatial
objects.

• Items, total utility, and individual utilities of the items within a transaction have to be seperated by
the symbol ‘:’

An example:

Bread Jam Butter: 4.5:1 2 1.5
Bat Ball: 110:100 10
Pen Book: | 7:2 5

Utility temporal databases

Description

A utility temporal database consists of timestamp, tid, items, and their corresponding utility
values. A sample utility temporal database generated from the set of items, I={Bread, Jam,
Butter, Pen, Books, Bat}, is shown in below table:

Format of a utility temporal database

The utility temporal database must exist in the following

Format:

>>> timestamp:itemA<seo>itemB<sep>...<sep>itemN:total utility:utilityA
→˓<sep>utilityB<sep>...<sep>utilityN

The ‘total utility’ represents the total utility value of items in a transaction.

Rules to create a utility temporal database

• The default separator, i.e., , used in PAMI is tab space (or t). However, the users can override the
default separator with their choice. Since spatial objects, such as Point, Line, and Polygon, are repre-
sented using space and comma, usage of tab space facilitates us to effectively distinguish the spatial
objects.

• Timestamp, items, total utility, and individual utilities of the items within a transaction have to be
seperated by the symbol ‘:’

Example:

1 Bread Jam Butter: | 4.5:1 2 1.5
2 Bat Ball: | 110:100 10
3 Pen Book: 7:2 5

4.1 High-Utility Pattern mining

The aim of high-utility pattern mining (HUPM) is to discover meaningful patterns in medical databases that contribute
to maximizing the utility from the perspective of diagnosis. However, HUPM pays less attention to the interpretability
and explainability of these patterns in medical decision-making scenarios.

Applications: Clinical Decision Support, Drug Prescription and Therapy Planning, Disease Diagnosis and Prediction.

182 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

The aim of high-utility pattern mining (HUPM) is to discover meaningful patterns in medical databases that contribute
to maximizing the utility from the perspective of diagnosis. However, HUPM pays less attention to the interpretability
and explainability of these patterns in medical decision-making scenarios.

Applications: Clinical Decision Support, Drug Prescription and Therapy Planning, Disease Diagnosis and Prediction.

4.1.1 Basic

RHUIM

class PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM(iFile: str, minUtil: int, minUR: float, sep:
str = '\t')

Bases: _utilityPatterns

Description
RHUIM algorithm helps us to mine Relative High Utility itemSets from transactional databases.

Reference
R. U. Kiran, P. Pallikila, J. M. Luna, P. Fournier-Viger, M. Toyoda and P. K. Reddy, “Discover-
ing Relative High Utility Itemsets in Very Large Transactional Databases Using Null-Invariant
Measure,”

2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 2021,
pp. 252-262, doi: 10.1109/BigData52589.2021.9672064.

Parameters

• iFile – str : Name of the Input file to mine complete set of Relative High Utility patterns

• oFile – str : Name of the output file to store complete set of Relative High Utility patterns

• minSup – float or int or str : minSup measure constraints the minimum number of trans-
actions in a database where a pattern must appear Example: minSup=10 will be treated as
integer, while minSup=10.0 will be treated as float

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

• minUtil – int : The minimum utility threshold.

Attributes

iFile
[file] Name of the input file to mine complete set of patterns

oFile
[file] Name of the output file to store complete set of patterns

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

minUtil
[int] The user given minUtil value

minUR
[float] The user given minUR value

4.1. High-Utility Pattern mining 183

PAMI, Release 2024.04.23

relativeHighUtilityItemSets
[map] set of relative high utility itemSets

candidateCount
[int] Number of candidates

utilityBinArrayLU
[list] A map to hold the local utility values of the items in database

utilityBinArraySU
[list] A map to hold the subtree utility values of the items is database

oldNamesToNewNames
[list] A map which contains old names, new names of items as key value pairs

newNamesToOldNames
[list] A map which contains new names, old names of items as key value pairs

maxMemory
[float] Maximum memory used by this program for running

patternCount
[int] Number of RHUI’s

itemsToKeep
[list] keep only the promising items i.e items that can extend other items to form RHUIs

itemsToExplore
[list] list of items that needs to be explored

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

backTrackingRHUIM(transactionsOfP, itemsToKeep, itemsToExplore, prefixLength)
A method to mine the RHUIs Recursively

useUtilityBinArraysToCalculateUpperBounds(transactionsPe, j, itemsToKeep)
A method to calculate the sub-tree utility and local utility of all items that can extend itemSet
P and e

184 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

output(tempPosition, utility)
A method to output a relative-high-utility itemSet to file or memory depending on what the
user chose

is_equal(transaction1, transaction2)
A method to Check if two transaction are identical

useUtilityBinArrayToCalculateSubtreeUtilityFirstTime(dataset)
A method to calculate the sub tree utility values for single items

sortDatabase(self, transactions)
A Method to sort transaction

sort_transaction(self, trans1, trans2)
A Method to sort transaction

useUtilityBinArrayToCalculateLocalUtilityFirstTime(self, dataset)
A method to calculate local utility values for single itemSets

Methods to execute code on terminal

Format:

(.venv) $ python3 RHUIM.py <inputFile> <outputFile> <minUtil> <sep>

Example usage:

(.venv) $ python3 RHUIM.py sampleTDB.txt output.txt 35 20

.. note:: minSup will be considered in times of minSup and count of␣
→˓database transactions

Importing this algorithm into a python program

from PAMI.relativeHighUtilityPattern.basic import RHUIM as alg

obj=alg.RHUIM("input.txt", 35, 20)

obj.startMine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.savePatterns(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getmemoryUSS()

print("Total Memory in USS:", memUSS)

(continues on next page)

4.1. High-Utility Pattern mining 185

PAMI, Release 2024.04.23

(continued from previous page)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by Pradeep Pallikila under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ dict
Function to send the set of patterns after completion of the mining process

Returns
returning patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final patterns in a dataframe

Returns
returning patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

186 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

printResults()→ None
This function is used to print the results :return: None

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (file) – name of the output file

Returns
None

sortDatabase(transactions: list)→ None
A Method to sort transaction

Attributes
Parameters
transactions (list) – transaction of items

Returns
sorted transactions.

Return type
Transactions or list

sort_transaction(trans1: _Transaction, trans2: _Transaction)→ int
A Method to sort transaction

Attributes
Parameters
trans1 (Transaction) – the first transaction .

:param trans2:the second transaction. :type trans2: Transaction :return: sorted transaction. :rtype: Trans-
action

startMine()→ None
Mining process will start from this function :return: None

4.2 High-Utility Frequent Pattern Mining

High utility frequent pattern mining involves discovering patterns in transactional databases where each pattern consists
of a set of items that occur frequently and contribute significantly to the overall utility of the dataset. These patterns are
characterized by their high utility values, which reflect their importance or usefulness in the context of the application
domain.

Applications: Market Basket Analysis, Healthcare Analytics, Web Usage Mining, Fraud Detection.

High utility frequent pattern mining involves discovering patterns in transactional databases where each pattern consists
of a set of items that occur frequently and contribute significantly to the overall utility of the dataset. These patterns are
characterized by their high utility values, which reflect their importance or usefulness in the context of the application
domain.

Applications: Market Basket Analysis, Healthcare Analytics, Web Usage Mining, Fraud Detection.

4.2. High-Utility Frequent Pattern Mining 187

PAMI, Release 2024.04.23

4.2.1 Basic

HUFIM

class PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM(iFile: str, minUtil: int | float, minSup: int |
float, sep: str = '\t')

Bases: _utilityPatterns

Description
HUFIM (High Utility Frequent Itemset Miner) algorithm helps us to mine High Utility Frequent
ItemSets (HUFIs) from transactional databases.

Reference
Kiran, R.U., Reddy, T.Y., Fournier-Viger, P., Toyoda, M., Reddy, P.K., & Kitsuregawa, M. (2019).
Efficiently Finding High Utility-Frequent Itemsets Using Cutoff and Suffix Utility. PAKDD 2019.
DOI: 10.1007/978-3-030-16145-3_15

Parameters

• iFile – str : Name of the Input file to mine complete set of Geo-referenced frequent se-
quence patterns

• oFile – str : Name of the output file to store complete set of Geo-referenced frequent se-
quence patterns

• minSup – int or float or str : The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float.

• minUtil – int : The user given minUtil value.

• candidateCount – int Number of candidates

• maxMemory – int Maximum memory used by this program for running

• nFile – str : Name of the input file to mine complete set of Geo-referenced frequent sequence
patterns

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the input file to mine complete set of patterns

oFile
[file] Name of the output file to store complete set of patterns

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

minUtil
[int] The user given minUtil value

minSup
[float] The user given minSup value

188 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

highUtilityFrequentItemSets: map
set of high utility frequent itemSets

candidateCount: int
Number of candidates

utilityBinArrayLU: list
A map to hold the local utility values of the items in database

utilityBinArraySU: list
A map to hold the subtree utility values of the items is database

oldNamesToNewNames: list
A map which contains old names, new names of items as key value pairs

newNamesToOldNames: list
A map which contains new names, old names of items as key value pairs

singleItemSetsSupport: map
A map which maps from single itemsets (items) to their support

singleItemSetsUtility: map
A map which maps from single itemsets (items) to their utilities

maxMemory: float
Maximum memory used by this program for running

patternCount: int
Number of RHUI’s

itemsToKeep: list
keep only the promising items i.e items that can extend other items to form RHUIs

itemsToExplore: list
list of items that needs to be explored

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

backTrackingHUFIM(transactionsOfP, itemsToKeep, itemsToExplore, prefixLength)
A method to mine the RHUIs Recursively

4.2. High-Utility Frequent Pattern Mining 189

PAMI, Release 2024.04.23

useUtilityBinArraysToCalculateUpperBounds(transactionsPe, j, itemsToKeep)
A method to calculate the sub-tree utility and local utility of all items that can extend itemSet
P and e

output(tempPosition, utility)
A method to output a relative-high-utility itemSet to file or memory depending on what the
user chose

isEqual(transaction1, transaction2)
A method to Check if two transaction are identical

useUtilityBinArrayToCalculateSubtreeUtilityFirstTime(dataset)
A method to calculate the sub tree utility values for single items

sortDatabase(self, transactions)
A Method to sort transaction

sortTransaction(self, trans1, trans2)
A Method to sort transaction

useUtilityBinArrayToCalculateLocalUtilityFirstTime(self, dataset)
A method to calculate local utility values for single itemSets

Executing the code on terminal

Format:

(.venv) $ python3 HUFIM.py <inputFile> <outputFile> <minUtil> <sep>

Example Usage:

(.venv) $ python3 HUFIM.py sampleTDB.txt output.txt 35 20

(.venv) $ python3 HUFIM.py sampleTDB.txt output.txt 35 20

Note: minSup will be considered in percentage of database transactions

Sample run of importing the code

from PAMI.highUtilityFrequentPattern.basic import HUFIM as alg

obj=alg.HUFIM("input.txt", 35, 20)

obj.mine()

Patterns = obj.getPatterns()

print("Total number of high utility frequent Patterns:", len(Patterns))

obj.save("output")

memUSS = obj.getMemoryUSS()
(continues on next page)

190 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

(continued from previous page)

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by pradeep pallikila under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, List[int | float]]
Function to send the set of patterns after completion of the mining process

Returns
returning patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final patterns in a dataframe

Returns
returning patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

4.2. High-Utility Frequent Pattern Mining 191

PAMI, Release 2024.04.23

Return type
float

mine()→ None
High Utility Frequent Pattern mining start here

Returns
None

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
High Utility Frequent Pattern mining start here

Returns
None

4.3 High-Utility Geo-referenced Frequent Pattern Mining

High utility georeferenced frequent pattern mining involves the discovery of spatial patterns in georeferenced datasets,
where these patterns represent combinations of spatially distributed items or events that occur frequently and are as-
sociated with high utility values. These patterns are characterized by their high utility, reflecting their importance or
usefulness in the context of the application domain.

Applications: Location-Based Services (LBS), Urban Planning and Development, Environmental Monitoring.

High utility georeferenced frequent pattern mining involves the discovery of spatial patterns in georeferenced datasets,
where these patterns represent combinations of spatially distributed items or events that occur frequently and are as-
sociated with high utility values. These patterns are characterized by their high utility, reflecting their importance or
usefulness in the context of the application domain.

Applications: Location-Based Services (LBS), Urban Planning and Development, Environmental Monitoring.

4.3.1 Basic

SHUFIM

class PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM(iFile, nFile, minUtil,
minSup, sep='\t')

Bases: _utilityPatterns

Description
Spatial High Utility Frequent ItemSet Mining (SHUFIM) aims to discover all itemSets in a spa-
tioTemporal database that satisfy the user-specified minimum utility, minimum support and max-
imum distance constraints

192 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

Reference
10.1007/978-3-030-37188-3_17

Parameters

• iFile – str : Name of the Input file to mine complete set of Geo-referenced frequent se-
quence patterns

• oFile – str : Name of the output file to store complete set of Geo-referenced frequent se-
quence patterns

• minSup – int or float or str : The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float.

• minUtil – int : The user given minUtil value.

• candidateCount – int Number of candidates

• maxMemory – int Maximum memory used by this program for running

• nFile – str : Name of the input file to mine complete set of Geo-referenced frequent sequence
patterns

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the input file to mine complete set of frequent patterns

nFile
[file] Name of the Neighbours file that contain neighbours of items

oFile
[file] Name of the output file to store complete set of frequent patterns

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

minUtil
[int] The user given minUtil

minSup
[float] The user given minSup value

highUtilityFrequentSpatialItemSets: map
set of high utility itemSets

candidateCount: int
Number of candidates

utilityBinArrayLU: list
A map to hold the pmu values of the items in database

utilityBinArraySU: list
A map to hold the subtree utility values of the items is database

4.3. High-Utility Geo-referenced Frequent Pattern Mining 193

PAMI, Release 2024.04.23

oldNamesToNewNames: list
A map to hold the subtree utility values of the items is database

newNamesToOldNames: list
A map to store the old name corresponding to new name

Neighbours
[map] A dictionary to store the neighbours of a item

maxMemory: float
Maximum memory used by this program for running

patternCount: int
Number of SHUFI’s (Spatial High Utility Frequent Itemsets)

itemsToKeep: list
keep only the promising items ie items whose supersets can be required patterns

itemsToExplore: list
keep items that subtreeUtility grater than minUtil

:Methods :

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this func-
tion

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this func-
tion

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

calculateNeighbourIntersection(self, prefixLength)
A method to return common Neighbours of items

backtrackingEFIM(transactionsOfP, itemsToKeep, itemsToExplore, prefixLength)
A method to mine the SHUIs Recursively

useUtilityBinArraysToCalculateUpperBounds(transactionsPe, j, itemsToKeep,
neighbourhoodList)

A method to calculate the sub-tree utility and local utility of all items that can extend itemSet P
and e

output(tempPosition, utility)
A method ave a high-utility itemSet to file or memory depending on what the user chose

isEqual(transaction1, transaction2)
A method to Check if two transaction are identical

194 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

intersection(lst1, lst2)
A method that return the intersection of 2 list

useUtilityBinArrayToCalculateSubtreeUtilityFirstTime(dataset)
Scan the initial database to calculate the subtree utility of each items using a utility-bin array

sortDatabase(self, transactions)
A Method to sort transaction in the order of PMU

sortTransaction(self, trans1, trans2)
A Method to sort transaction in the order of PMU

useUtilityBinArrayToCalculateLocalUtilityFirstTime(self, dataset)
A method to scan the database using utility bin array to calculate the pmus

Executing the code on terminal :

Format:

(.venv) $ python3 SHUFIM.py <inputFile> <outputFile> <Neighbours> <minUtil> <minSup>
→˓ <sep>

Example Usage:

(.venv) $ python3 SHUFIM.py sampleTDB.txt output.txt sampleN.txt 35 20

Note: minSup will be considered in percentage of database transactions

Sample run of importing the code:

from PAMI.highUtilityGeoreferencedFrequentPattern.basic import SHUFIM as alg

obj=alg.SHUFIM("input.txt","Neighbours.txt",35,20)

obj.mine()

patterns = obj.getPatterns()

print("Total number of Spatial high utility frequent Patterns:", len(patterns))

obj.save("output")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()
(continues on next page)

4.3. High-Utility Geo-referenced Frequent Pattern Mining 195

PAMI, Release 2024.04.23

(continued from previous page)

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by Pradeep Pallikila under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of patterns after completion of the mining process

Returns
returning patterns

Return type
dict

getPatternsAsDataFrame()

Storing final patterns in a dataframe :return: returning patterns in a dataframe :rtype: pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()

High Utility Frequent Pattern mining start here

printResults()

This function is used to print the results

save(outFile)
Complete set of patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

196 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

startMine()

High Utility Frequent Pattern mining start here

PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.main()

4.4 High-Utility Spatial Pattern Mining

High utility spatial pattern mining involves the identification of patterns in spatial datasets where each pattern has high
utility, reflecting its significance or importance in the context of the application domain. These patterns consist of
spatially distributed items or events that occur frequently and contribute significantly to a predefined utility measure.

Applications: Resource Management, Precision Agriculture, Emergency Response and Disaster Management.

High utility spatial pattern mining involves the identification of patterns in spatial datasets where each pattern has high
utility, reflecting its significance or importance in the context of the application domain. These patterns consist of
spatially distributed items or events that occur frequently and contribute significantly to a predefined utility measure.

Applications: Resource Management, Precision Agriculture, Emergency Response and Disaster Management.

4.4.1 Basic

HDSHUIM

class PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM(iFile: str, nFile: str, minUtil: int, sep:
str = '\t')

Bases: _utilityPatterns

Description
Spatial High Utility ItemSet Mining (SHUIM) [3] is an important model in data mining with
many real-world applications. It involves finding all spatially interesting itemSets having high
value in a quantitative spatio temporal database.

Reference
P. Pallikila et al., “Discovering Top-k Spatial High Utility Itemsets in Very Large Quantitative
Spatiotemporal databases,” 2021 IEEE International Conference on Big Data (Big Data), Or-
lando, FL, USA, 2021, pp. 4925-4935, doi: 10.1109/BigData52589.2021.9671912.

Parameters

• iFile – str : Name of the Input file to mine complete set of High Utility Spatial patterns

• oFile – str : Name of the output file to store complete set of High Utility Spatial patterns

• minSup – int or float or str : The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float.

• maxPer – float : The user can specify maxPer in count or proportion of database size. If
the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count.

• minUtil – int : Minimum utility threshold given by User

• nFile – str : Name of the input file to mine complete set of High Utility Spatial patterns

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

4.4. High-Utility Spatial Pattern Mining 197

PAMI, Release 2024.04.23

Attributes

iFile
[str] Name of the input file to mine complete set of frequent patterns

oFile
[str] Name of the output file to store complete set of frequent patterns

nFile: str
Name of Neighbourhood items file

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

minUtil
[int] The user given minUtil

mapFMAP: list
EUCS map of the FHM algorithm

candidates: int
candidates generated

huiCnt: int
huis created

neighbors: map
keep track of neighbours of elements

mapOfPMU: map
a map to keep track of Probable Maximum utility(PMU) of each item

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

constructCUL(x, compactUList, st, minUtil, length, exNeighbours)
A method to construct CUL’s database

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

198 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

Explore_SearchTree(prefix, uList, exNeighbours, minUtil)
A method to find all high utility itemSets

updateClosed(x, compactUList, st, exCul, newT, ex, eyTs, length)
A method to update closed values

saveItemSet(prefix, prefixLen, item, utility)
A method to save itemSets

updateElement(z, compactUList, st, exCul, newT, ex, duPrevPos, eyTs)
A method to updates vales for duplicates

Executing the code on terminal:

Format:

(.venv) $ python3 HDSHUIM.py <inputFile> <outputFile> <Neighbours> <minUtil>
→˓<separator>

Example Usage:

(.venv) $ python3 HDSHUIM.py sampleTDB.txt output.txt sampleN.txt 35 ','

Note: minSup will be considered in percentage of database transactions

Sample run of importing the code:

from PAMI.highUtilityGeoreferencedFrequentPattern.basic import HDSHUIM as alg

obj=alg.HDSHUIM("input.txt","Neighbours.txt",35)

obj.mine()

Patterns = obj.getPatterns()

print("Total number of Spatial High-Utility Patterns:", len(Patterns))

obj.save("output")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()
(continues on next page)

4.4. High-Utility Spatial Pattern Mining 199

PAMI, Release 2024.04.23

(continued from previous page)

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by B.Sai Chitra under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, str]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ Dict[str, str]
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
main program to start the operation

200 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
main program to start the operation

SHUIM

class PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM(iFile: str, nFile: str, minUtil: int, sep: str =
'\t')

Bases: _utilityPatterns

Description
Spatial High Utility itemSet Mining (SHUIM) aims to discover all itemSets in a spatioTemporal
database that satisfy the user-specified minimum utility and maximum distance constraints

Reference
Rage, Uday & Veena, Pamalla & Penugonda, Ravikumar & Raj, Bathala & Dao, Minh & Zettsu,
Koji & Bommisetti, Sai. (2023). HDSHUI-miner: a novel algorithm for discovering spatial high-
utility itemsets in high-dimensional spatiotemporal databases. Applied Intelligence. 53. 1-26.
10.1007/s10489-022-04436-w.

Parameters

• iFile – str : Name of the Input file to mine complete set of High Utility Spatial patterns

• oFile – str : Name of the output file to store complete set of High Utility Spatial patterns

• minSup – int or float or str : The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float.

• maxPer – float : The user can specify maxPer in count or proportion of database size. If
the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count.

• minUtil – int : Minimum utility threshold given by User

• maxMemory – int : Maximum memory used by this program for running

• candidateCount – int : Number of candidates to consider when calculating a high utility
spatial pattern

• nFile – str : Name of the input file to mine complete set of High Utility Spatial patterns

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the input file to mine complete set of frequent patterns

4.4. High-Utility Spatial Pattern Mining 201

PAMI, Release 2024.04.23

nFile
[file] Name of the Neighbours file that contain neighbours of items

oFile
[file] Name of the output file to store complete set of frequent patterns

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

minUtil
[int] The user given minUtil

highUtilityItemSets: map
set of high utility itemSets

candidateCount: int
Number of candidates

utilityBinArrayLU: list
A map to hold the pmu values of the items in database

utilityBinArraySU: list
A map to hold the subtree utility values of the items is database

oldNamesToNewNames: list
A map to hold the subtree utility values of the items is database

newNamesToOldNames: list
A map to store the old name corresponding to new name

Neighbours
[map] A dictionary to store the neighbours of a item

maxMemory:Maximum memory used by this program for running patternCount: int

Number of SHUI’s

itemsToKeep: list
keep only the promising items ie items having twu >= minUtil

itemsToExplore: list
keep items that subtreeUtility grater than minUtil

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

202 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

calculateNeighbourIntersection(self, prefixLength)
A method to return common Neighbours of items

backtrackingEFIM(transactionsOfP, itemsToKeep, itemsToExplore, prefixLength)
A method to mine the SHUIs Recursively

useUtilityBinArraysToCalculateUpperBounds(transactionsPe, j, itemsToKeep,
neighbourhoodList)

A method to calculate the sub-tree utility and local utility of all items that can extend itemSet
P and e

output(tempPosition, utility)
A method ave a high-utility itemSet to file or memory depending on what the user chose

_isEqual(transaction1, transaction2)
A method to Check if two transaction are identical

intersection(lst1, lst2)
A method that return the intersection of 2 list

useUtilityBinArrayToCalculateSubtreeUtilityFirstTime(dataset)
Scan the initial database to calculate the subtree utility of each items using a utility-bin array

sortDatabase(self, transactions)
A Method to sort transaction in the order of PMU

sort_transaction(self, trans1, trans2)
A Method to sort transaction in the order of PMU

useUtilityBinArrayToCalculateLocalUtilityFirstTime(self, dataset)
A method to scan the database using utility bin array to calculate the pmus

Executing the code on terminal:

Format:

(.venv) $ python3 SHUIM.py <inputFile> <outputFile> <Neighbours> <minUtil> <sep>

Example Usage:

(.venv) $ python3 SHUIM.py sampleTDB.txt output.txt sampleN.txt 35

Note: minSup will be considered in percentage of database transactions

4.4. High-Utility Spatial Pattern Mining 203

PAMI, Release 2024.04.23

Sample run of importing the code:

from PAMI.highUtilitySpatialPattern.basic import SHUIM as alg

obj=alg.SHUIM("input.txt","Neighbours.txt",35)

obj.mine()

frequentPatterns = obj.getPatterns()

print("Total number of Spatial high utility Patterns:", len(frequentPatterns))

obj.save("output")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by Pradeep Pallikila under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, str]
Function to send the set of patterns after completion of the mining process

Returns
returning patterns

204 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final patterns in a dataframe

Returns
returning patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
main program to start the operation

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
main program to start the operation

4.4.2 Top-K

TKSHUIM

class PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Dataset(datasetpath, sep)
Bases: object

A class represent the list of transactions in this dataset

Attributes

transactions:
the list of transactions in this dataset

maxItem:
the largest item name

Methods

4.4. High-Utility Spatial Pattern Mining 205

PAMI, Release 2024.04.23

createTransaction(line):
Create a transaction object from a line from the input file

getMaxItem():
return Maximum Item

getTransactions():
return transactions in database

createTransaction(line)
A method to create Transaction from dataset given

Parameters
line (string) – represent a single line of database

:return : Transaction. :rtype: int

getMaxItem()

A method to return name of the largest item

getTransactions()

A method to return transactions from database

maxItem = 0

transactions = []

class PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM(iFile, nFile, k, sep='\t')
Bases: utilityPatterns

Description
Top K Spatial High Utility ItemSet Mining (TKSHUIM) aims to discover Top-K Spatial High
Utility Itemsets (TKSHUIs) in a spatioTemporal database

Reference
P. Pallikila et al., “Discovering Top-k Spatial High Utility Itemsets in Very Large Quantitative
Spatiotemporal databases,” 2021 IEEE International Conference on Big Data (Big Data), Or-
lando, FL, USA, 2021, pp. 4925-4935, doi: 10.1109/BigData52589.2021.9671912.

Parameters

• iFile – str : Name of the Input file to mine complete set of High Utility Spatial patterns

• oFile – str : Name of the output file to store complete set of High Utility Spatial patterns

• minUtil – int : Minimum utility threshold given by User

• maxMemory – int : Maximum memory used by this program for running

• candidateCount – int : Number of candidates to consider when calculating a high utility
spatial pattern

• nFile – str : Name of the input file to mine complete set of High Utility Spatial patterns

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the input file to mine complete set of frequent patterns

nFile
[file] Name of the Neighbours file that contain neighbours of items

206 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

oFile
[file] Name of the output file to store complete set of frequent patterns

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

k
[int] The user given k value

candidateCount: int
Number of candidates

utilityBinArrayLU: list
A map to hold the pmu values of the items in database

utilityBinArraySU: list
A map to hold the subtree utility values of the items is database

oldNamesToNewNames: list
A map to hold the subtree utility values of the items is database

newNamesToOldNames: list
A map to store the old name corresponding to new name

Neighbours
[map] A dictionary to store the neighbours of a item

maxMemory: float
Maximum memory used by this program for running

itemsToKeep: list
keep only the promising items ie items having twu >= minUtil

itemsToExplore: list
keep items that subtreeUtility grater than minUtil

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

4.4. High-Utility Spatial Pattern Mining 207

PAMI, Release 2024.04.23

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

calculateNeighbourIntersection(self, prefixLength)
A method to return common Neighbours of items

backtrackingEFIM(transactionsOfP, itemsToKeep, itemsToExplore, prefixLength)
A method to mine the TKSHUIs Recursively

useUtilityBinArraysToCalculateUpperBounds(transactionsPe, j, itemsToKeep,
neighbourhoodList)

A method to calculate the sub-tree utility and local utility of all items that can extend itemSet
P and e

output(tempPosition, utility)
A method ave a high-utility itemSet to file or memory depending on what the user chose

is_equal(transaction1, transaction2)
A method to Check if two transaction are identical

intersection(lst1, lst2)
A method that return the intersection of 2 list

useUtilityBinArrayToCalculateSubtreeUtilityFirstTime(dataset)
Scan the initial database to calculate the subtree utility of each items using a utility-bin array

sortDatabase(self, transactions)
A Method to sort transaction in the order of PMU

sort_transaction(self, trans1, trans2)
A Method to sort transaction in the order of PMU

useUtilityBinArrayToCalculateLocalUtilityFirstTime(self, dataset)
A method to scan the database using utility bin array to calculate the pmus

Executing the code on terminal:

Format:

(.venv) $ python3 TKSHUIM.py <inputFile> <outputFile> <Neighbours> <k> <sep>

Example Usage:

(.venv) $ python3 TKSHUIM.py sampleTDB.txt output.txt sampleN.txt 35

Note: maxMemory will be considered as Maximum memory used by this program for running

208 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

Sample run of importing the code:

from PAMI.highUtilitySpatialPattern.topk import TKSHUIM as alg

obj=alg.TKSHUIM("input.txt","Neighbours.txt",35)

obj.mine()

Patterns = obj.getPatterns()

obj.save("output")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by Pradeep Pallikila under the supervision of Professor Rage Uday
Kiran.

Neighbours = {}

additemset(itemset, utility)
adds the itemset to the priority queue

Parameters

• itemset (str) – the itemset to be added

• utility (numpy.array) – utility matrix for the itemset to be added

backtrackingEFIM(transactionsOfP, itemsToKeep, itemsToExplore, prefixLength)
A method to mine the TKSHUIs Recursively

Parameters

• transactionsOfP (list) – the list of transactions containing the current prefix P

• itemsToKeep (list) – the list of secondary items in the p-projected database

• itemsToExplore (list) – the list of primary items in the p-projected database

• prefixLength (int) – current prefixLength

calculateNeighbourIntersection(prefixLength)
A method to find common Neighbours

4.4. High-Utility Spatial Pattern Mining 209

PAMI, Release 2024.04.23

Parameters
prefixLength – the prefix itemSet

:type prefixLength:int

candidateCount = 0

endTime = 0.0

finalPatterns = {}

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of patterns after completion of the mining process

Returns
returning patterns

Return type
dict

getPatternsAsDataFrame()

Storing final patterns in a dataframe

Returns
returning patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

heapList = []

iFile = ' '

intTostr = {}

210 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

intersection(lst1, lst2)
A method that return the intersection of 2 list

Parameters

• lst1 (list) – items neighbour to item1

• lst2 (list) – items neighbour to item2

:return :intersection of two lists :rtype : list

is_equal(transaction1, transaction2)
A method to Check if two transaction are identical

Parameters

• transaction1 (Transaction) – the first transaction.

• transaction2 (Transaction) – the second transaction.

:return : whether both are identical or not :rtype: bool

maxMemory = 0

memoryRSS = 0.0

memoryUSS = 0.0

minUtil = 0

mine()

Main function of the program.

nFile = ' '

newNamesToOldNames = {}

oFile = ' '

oldNamesToNewNames = {}

output(tempPosition, utility)
A method save all high-utility itemSet to file or memory depending on what the user chose

Parameters
tempPosition – position of last item

:type tempPosition : int :param utility: total utility of itemSet :type utility: int

printResults()

This function is used to print the results

save(outFile)
Complete set of patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

sep = '\t'

4.4. High-Utility Spatial Pattern Mining 211

PAMI, Release 2024.04.23

sortDatabase(transactions)
A Method to sort transaction in the order of PMU

Parameters
transactions (Transaction) – transaction of items

Returns
sorted transaction

Return type
Transaction

sort_transaction(trans1, trans2)
A Method to sort transaction in the order of PMU

Parameters
trans1 (Transaction) – the first transaction.

:param trans2:the second transaction. :type trans2: Transaction :return: sorted transaction. :rtype: int

startMine()

Main function of the program.

startTime = 0.0

strToint = {}

212 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

temp = [0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

4.4. High-Utility Spatial Pattern Mining 213

PAMI, Release 2024.04.23

useUtilityBinArrayToCalculateLocalUtilityFirstTime(dataset)
A method to scan the database using utility bin array to calculate the pmus

Parameters
dataset (database) – the transaction database.

useUtilityBinArrayToCalculateSubtreeUtilityFirstTime(dataset)
Scan the initial database to calculate the subtree utility of each item using a utility-bin array

Parameters
dataset (Dataset) – the transaction database

useUtilityBinArraysToCalculateUpperBounds(transactionsPe, j, itemsToKeep, neighbourhoodList)
A method to calculate the sub-tree utility and local utility of all items that can extend itemSet P U {e}

Parameters
transactionsPe (list) – transactions the projected database for P U {e}

:param j:the position of j in the list of promising items :type j:int :param itemsToKeep :the list of promising
items :type itemsToKeep: list :param neighbourhoodList: list of neighbourhood elements :type neighbour-
hoodList: list

utilityBinArrayLU = {}

utilityBinArraySU = {}

class PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction(items, utilities, transactionUtility,
pmus=None)

Bases: object

A class to store Transaction of a database

Attributes

items: list
A list of items in transaction

utilities: list
A list of utilites of items in transaction

transactionUtility: int
represent total sum of all utilities in the database

pmus: list
represent the pmu (probable maximum utility) of each element in the transaction

prefixutility:
prefix Utility values of item

offset:
an offset pointer, used by projected transactions

Methods

projectedTransaction(offsetE):
A method to create new Transaction from existing till offsetE

getItems():
return items in transaction

getUtilities():
return utilities in transaction

214 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

getPmus():
return pmus in transaction

getLastPosition():
return last position in a transaction

removeUnpromisingItems():
A method to remove items with low Utility than minUtil

insertionSort():
A method to sort all items in the transaction

getItems()

A method to return items in transaction

getLastPosition()

A method to return last position in a transaction

getPmus()

A method to return pmus in transaction

getUtilities()

A method to return utilities in transaction

insertionSort()

A method to sort items in order

offset = 0

prefixUtility = 0

projectTransaction(offsetE)
A method to create new Transaction from existing till offsetE

Parameters
offsetE (int) – an offset over the original transaction for projecting the transaction

removeUnpromisingItems(oldNamesToNewNames)
A method to remove items with low Utility than minUtil

Parameters
oldNamesToNewNames (map) – A map represent old namses to new names

PAMI.highUtilitySpatialPattern.topk.TKSHUIM.main()

4.5 Relative High-Utility Pattern Mining

Relative high utility pattern mining involves the discovery of patterns in datasets where each pattern has a high utility
relative to other patterns in the dataset. These patterns represent itemsets, sequences, or other structured data elements
that contribute significantly to a predefined utility measure compared to other patterns in the dataset.

Applications: Retail and Market Basket Analysis, Recommendation Systems, Financial Transaction Analysis.

Relative high utility pattern mining involves the discovery of patterns in datasets where each pattern has a high utility
relative to other patterns in the dataset. These patterns represent itemsets, sequences, or other structured data elements
that contribute significantly to a predefined utility measure compared to other patterns in the dataset.

Applications: Retail and Market Basket Analysis, Recommendation Systems, Financial Transaction Analysis.

4.5. Relative High-Utility Pattern Mining 215

PAMI, Release 2024.04.23

4.5.1 Basic

EFIM

class PAMI.highUtilityPattern.basic.EFIM.EFIM(iFile, minUtil, sep='\t')
Bases: _utilityPatterns

Description
EFIM is one of the fastest algorithm to mine High Utility ItemSets from transactional databases.

Reference
Zida, S., Fournier-Viger, P., Lin, J.CW. et al. EFIM: a fast and memory efficient algorithm
for high-utility itemset mining. Knowl Inf Syst 51, 595–625 (2017). https://doi.org/10.1007/
s10115-016-0986-0

Parameters

• iFile – str : Name of the Input file to mine complete set of High Utility patterns

• oFile – str : Name of the output file to store complete set of High Utility patterns

• minUtil – int : The user given minUtil value.

• candidateCount – int Number of candidates specified by user

• maxMemory – int Maximum memory used by this program for running

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the input file to mine complete set of high utility patterns

oFile
[file] Name of the output file to store complete set of high utility patterns

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

minUtil
[int] The user given minUtil value

highUtilityitemSets: map
set of high utility itemSets

candidateCount: int
Number of candidates

utilityBinArrayLU: list
A map to hold the local utility values of the items in database

utilityBinArraySU: list
A map to hold the subtree utility values of the items is database

oldNamesToNewNames: list
A map which contains old names, new names of items as key value pairs

216 Chapter 4. Utility Pattern mining

https://doi.org/10.1007/s10115-016-0986-0
https://doi.org/10.1007/s10115-016-0986-0

PAMI, Release 2024.04.23

newNamesToOldNames: list
A map which contains new names, old names of items as key value pairs

maxMemory: float
Maximum memory used by this program for running

patternCount: int
Number of HUI’s

itemsToKeep: list
keep only the promising items ie items having local utility values greater than or equal to
minUtil

itemsToExplore: list
list of items that have subtreeUtility value greater than or equal to minUtil

:Methods :

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this func-
tion

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this func-
tion

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

backTrackingEFIM(transactionsOfP, itemsToKeep, itemsToExplore, prefixLength)
A method to mine the HUIs Recursively

useUtilityBinArraysToCalculateUpperBounds(transactionsPe, j, itemsToKeep)
A method to calculate the sub-tree utility and local utility of all items that can extend itemSet P
and e

output(tempPosition, utility)
A method to output a high-utility itemSet to file or memory depending on what the user chose

is_equal(transaction1, transaction2)
A method to Check if two transaction are identical

useUtilityBinArrayToCalculateSubtreeUtilityFirstTime(dataset)
A method to calculate the sub tree utility values for single items

sortDatabase(self, transactions)
A Method to sort transaction

sort_transaction(self, trans1, trans2)
A Method to sort transaction

4.5. Relative High-Utility Pattern Mining 217

PAMI, Release 2024.04.23

useUtilityBinArrayToCalculateLocalUtilityFirstTime(self, dataset)
A method to calculate local utility values for single itemsets

Executing the code on terminal:

Format:

(.venv) $ python3 EFIM.py <inputFile> <outputFile> <minUtil> <sep>

Example Usage:

(.venv) $ python3 EFIM sampleTDB.txt output.txt 35

Note: maxMemory will be considered as Maximum memory used by this program for running

Sample run of importing the code:

from PAMI.highUtilityPattern.basic import EFIM as alg

obj=alg.EFIM("input.txt",35)

obj.mine()

Patterns = obj.getPatterns()

print("Total number of high utility Patterns:", len(Patterns))

obj.save("output")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

218 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

Credits:

The complete program was written by pradeep pallikila under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function :return:
returning RSS memory consumed by the mining process :rtype: float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function :return:
returning USS memory consumed by the mining process :rtype: float

getPatterns()→ dict
Function to send the set of patterns after completion of the mining process :return: returning patterns :rtype:
dict

getPatternsAsDataFrame()→ _pd.DataFrame
Storing final patterns in a dataframe :return: returning patterns in a dataframe :rtype: pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process :return: returning total amount of
runtime taken by the mining process :rtype: float

mine()→ None
Start the EFIM algorithm. :return: None

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file :param outFile: name of the output file
:type outFile: csv file :return: None

sort_transaction(trans1: _Transaction, trans2: _Transaction)→ int
A Method to sort transaction :param trans1: the first transaction :type trans1: Trans :param trans2:the
second transaction :type trans2: Trans :return: sorted transaction :rtype: int

startMine()→ None
Start the EFIM algorithm. :return: None

HMiner

class PAMI.highUtilityPattern.basic.HMiner.HMiner(iFile1, minUtil, sep='\t')
Bases: _utilityPatterns

Description
High Utility itemSet Mining (HMIER) is an importent algorithm to miner High utility items from
the database.

Reference
Parameters

• iFile – str : Name of the Input file to mine complete set of High Utility patterns

• oFile – str : Name of the output file to store complete set of High Utility patterns

4.5. Relative High-Utility Pattern Mining 219

PAMI, Release 2024.04.23

• minUtil – int : The user given minUtil value.

• minSup – int or float or str : The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float.

• maxPer – float : The user can specify maxPer in count or proportion of database size. If
the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the input file to mine complete set of frequent patterns

oFile
[file] Name of the output file to store complete set of frequent patterns

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

minUtil
[int] The user given minUtil

mapFMAP: list
EUCS map of the FHM algorithm

candidates: int
candidates genetated

huiCnt: int
huis created

neighbors: map
keep track of nighboues of elements

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

220 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

Explore_SearchTree(prefix, uList, minUtil)
A method to find all high utility itemSets

UpdateCLosed(x, culs, st, excul, newT, ex, ey_ts, length)
A method to update closed values

saveitemSet(prefix, prefixLen, item, utility)
A method to save itemSets

updateElement(z, culs, st, excul, newT, ex, duppos, ey_ts)
A method to updates vales for duplicates

construcCUL(x, culs, st, minUtil, length, exnighbors)
A method to construct CUL’s database

Executing the code on terminal:

Format:

(.venv) $ python3 HMiner.py <inputFile> <outputFile> <minUtil>

Example Usage:

(.venv) $ python3 HMiner.py sampleTDB.txt output.txt 35

Note: minSup will be considered in percentage of database transactions

Sample run of importing the code:

from PAMI.highUtilityPattern.basic import HMiner as alg

obj = alg.HMiner("input.txt",35)

obj.mine()

Patterns = obj.getPatterns()

print("Total number of high utility Patterns:", len(Patterns))

obj.save("output")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

(continues on next page)

4.5. Relative High-Utility Pattern Mining 221

PAMI, Release 2024.04.23

(continued from previous page)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by B.Sai Chitra under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function :return:
returning RSS memory consumed by the mining process :rtype: float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function :return:
returning USS memory consumed by the mining process :rtype: float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process :return: returning
frequent patterns :rtype: dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe :return: returning frequent patterns in a dataframe :rtype:
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process :return: returning total amount of
runtime taken by the mining process :rtype: float

mine()

Main program to start the operation

printResults()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file :param outFile: name of the output file
:type outFile: csv file

startMine()

Main program to start the operation

222 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

UPGrowth

class PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth(iFile: str, minUtil: int, sep: str = '\t')
Bases: _utilityPatterns

Description
UP-Growth is two-phase algorithm to mine High Utility Itemsets from transactional databases.

Reference
Vincent S. Tseng, Cheng-Wei Wu, Bai-En Shie, and Philip S. Yu. 2010. UP-Growth: an efficient
algorithm for high utility itemset mining. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD ‘10). Association for Computing
Machinery, New York, NY, USA, 253–262. DOI:https://doi.org/10.1145/1835804.1835839

Parameters

• iFile – str : Name of the Input file to mine complete set of High Utility patterns

• oFile – str : Name of the output file to store complete set of High Utility patterns

• minUtil – int : The user given minUtil value.

• candidateCount – int Number of candidates specified by user

• maxMemory – int Maximum memory used by this program for running

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the input file to mine complete set of frequent patterns

oFile
[file] Name of the output file to store complete set of frequent patterns

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

minUtil
[int] The user given minUtil

NumberOfNodes
[int] Total number of nodes generated while building the tree

ParentNumberOfNodes
[int] Total number of nodes required to build the parent tree

MapItemToMinimumUtility
[map] A map to store the minimum utility of item in the database

phuis
[list] A list to store the phuis

MapItemToTwu
[map] A map to store the twu of each item in database

Methods

4.5. Relative High-Utility Pattern Mining 223

PAMI, Release 2024.04.23

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

createLocalTree(tree, item)
A Method to Construct conditional pattern base

UPGrowth(tree, alpha)
A Method to Mine UP Tree recursively

PrintStats()
A Method to print number of phuis

save(oFile)
Complete set of frequent patterns will be loaded in to an output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

Executing the code on terminal:

Format:

(.venv) $ python3 UPGrowth <inputFile> <outputFile> <Neighbours> <minUtil> <sep>

Example Usage:

(.venv) $ python3 UPGrowth sampleTDB.txt output.txt sampleN.txt 35

Note: maxMemory will be considered as Maximum memory used by this program for running

Sample run of importing the code:

from PAMI.highUtilityPattern.basic import UPGrowth as alg

obj=alg.UPGrowth("input.txt",35)

obj.mine()

highUtilityPattern = obj.getPatterns()
(continues on next page)

224 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

(continued from previous page)

print("Total number of Spatial Frequent Patterns:", len(highUtilityPattern))

obj.save("output")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by Pradeep pallikila under the supervision of Professor Rage Uday
Kiran.

PrintStats()→ None
A Method to print number of phuis :return: None

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function :return:
returning RSS memory consumed by the mining process :rtype: float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function :return:
returning USS memory consumed by the mining process :rtype: float

getPatterns()→ dict
Function to send the set of frequent patterns after completion of the mining process :return: returning
frequent patterns :rtype: dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe :return: returning frequent patterns in a dataframe :rtype:
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process return: returning total amount of
runtime taken by the mining process :rtype: float

mine()→ None
Mining process will start from here :return: None

printResults()→ None
This function is used to print the results :return: None

4.5. Relative High-Utility Pattern Mining 225

PAMI, Release 2024.04.23

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file :param outFile: name of the output file
:type outFile: csv file :return: None

startMine()→ None
Mining process will start from here :return: None

4.6 Weighted Frequent Pattern Mining

Weighted frequent pattern mining involves the discovery of patterns in datasets where items are assigned different
weights based on their significance. These patterns represent combinations of items that occur frequently and have a
high cumulative weight relative to other patterns in the dataset. The main focus in weighted frequent pattern mining is
to satisfy the downward closure property, which ensures that any subset of a frequent pattern is also frequent.

Applications: Market Basket Analysis, Healthcare Analytics, Network Traffic Analysis.

Weighted frequent pattern mining involves the discovery of patterns in datasets where items are assigned different
weights based on their significance. These patterns represent combinations of items that occur frequently and have a
high cumulative weight relative to other patterns in the dataset. The main focus in weighted frequent pattern mining is
to satisfy the downward closure property, which ensures that any subset of a frequent pattern is also frequent.

Applications: Market Basket Analysis, Healthcare Analytics, Network Traffic Analysis.

4.6.1 Basic

WFIM

class PAMI.weightedFrequentPattern.basic.WFIM.WFIM(iFile: str, wFile: str, minSup: str, minWeight: int,
sep: str = '\t')

Bases: _weightedFrequentPatterns

About this algorithm

Description

• WFMiner is one of the fundamental algorithm to discover weighted frequent patterns in a
transactional database.

• It stores the database in compressed fp-tree decreasing the memory usage and extracts the
patterns from tree.It employs employs downward closure property to reduce the search space
effectively.

Reference
U. Yun and J. J. Leggett, “Wfim: weighted frequent itemset mining with a weight range and a
minimum weight,” In: Proceedings of the 2005 SIAM International Conference on Data Mining.
SIAM, 2005, pp. 636–640.

https://epubs.siam.org/doi/pdf/10.1137/1.9781611972757.76

param iFile
str : Name of the Input file to mine complete set of weighted Frequent Patterns.

param oFile
str : Name of the output file to store complete set of weighted Frequent Patterns.

226 Chapter 4. Utility Pattern mining

https://epubs.siam.org/doi/pdf/10.1137/1.9781611972757.76

PAMI, Release 2024.04.23

param minSup
str or int or float: minimum support thresholds were tuned to find the appropriate ranges in the
limited memory

param sep
str : This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space. However, the users can override their default separator.

:Attributes :

iFile
[file] Input file name or path of the input file

minSup: float or int or str
The user can specify minSup either in count or proportion of database size. If the program detects
the data type of minSup is integer, then it treats minSup is expressed in count. Otherwise, it will
be treated as float. Example: minSup=10 will be treated as integer, while minSup=10.0 will be
treated as float

minWeight: float or int or str
The user can specify minWeight either in count or proportion of database size. If the program
detects the data type of minWeight is integer, then it treats minWeight is expressed in count.
Otherwise, it will be treated as float. Example: minWeight=10 will be treated as integer, while
minWeight=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
separator is tab space or . However, the users can override their default separator.

oFile
[file] Name of the output file or the path of the output file

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

finalPatterns
[dict] it represents to store the patterns

:Methods :

4.6. Weighted Frequent Pattern Mining 227

PAMI, Release 2024.04.23

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this func-
tion

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this func-
tion

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets()
Scans the dataset or dataframes and stores in list format

frequentOneItem()
Extracts the one-frequent patterns from transactions

Execution methods

Terminal command

Format:

(.venv) $ python3 basic.py <inputFile> <weightFile> <outputFile> <minSup>
→˓<minWeight>

Example Usage:

(.venv) $ python3 basic.py sampleDB.txt weightSample.txt patterns.txt 10.0 3.4

Note: minSup and maxPer will be considered in support count or frequency

Calling from a python program

from PAMI.weightFrequentPattern.basic import basic as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.basic(iFile, wFile, minSup, minWeight)

obj.mine()
(continues on next page)

228 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

(continued from previous page)

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.savePatterns(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getmemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function.

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, int]
Function to send the set of frequent patterns after completion of the mining process.

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe.

4.6. Weighted Frequent Pattern Mining 229

PAMI, Release 2024.04.23

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process.

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
main program to start the operation

Returns
None

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file.

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
main program to start the operation

Returns
None

4.7 Weighted Frequent Regular Pattern Mining

Weighted frequent regular pattern mining involves the discovery of regular patterns in a dataset where items are assigned
different weights based on their significance. Regular patterns are sequences of itemsets that occur frequently and
exhibit a regular or repeating structure. In weighted frequent regular pattern mining, the significance of a pattern is
determined not only by its frequency but also by the cumulative weights of its constituent itemsets.

Applications: Retail Analytics, Healthcare Data Analysis, Manufacturing Process Optimization.

Weighted frequent regular pattern mining involves the discovery of regular patterns in a dataset where items are assigned
different weights based on their significance. Regular patterns are sequences of itemsets that occur frequently and
exhibit a regular or repeating structure. In weighted frequent regular pattern mining, the significance of a pattern is
determined not only by its frequency but also by the cumulative weights of its constituent itemsets.

Applications: Retail Analytics, Healthcare Data Analysis, Manufacturing Process Optimization.

230 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

4.7.1 Basic

WFRIMiner

class PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner(iFile, _wFile, WS,
regularity, sep='\t')

Bases: _weightedFrequentRegularPatterns

About this algorithm

Description
WFRIMiner is one of the fundamental algorithm to discover weighted frequent regular patterns in
a transactional database. * It stores the database in compressed WFRI-tree decreasing the mem-
ory usage and extracts the patterns from tree.It employs downward closure property to reduce the
search space effectively.

Reference
K. Klangwisan and K. Amphawan, “Mining weighted-frequent-regular itemsets from transac-
tional database,” 2017 9th International Conference on Knowledge and Smart Technology (KST),
2017, pp. 66-71, doi: 10.1109/KST.2017.7886090.

param iFile
str : Name of the Input file to mine complete set of Weighted Frequent Regular Patterns.

param oFile
str : Name of the output file to store complete set of Weighted Frequent Regular Patterns.

param sep
str : This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space. However, the users can override their default separator.

param wFile
str : This is a weighted file.

Attributes

iFile
[file] Input file name or path of the input file

WS: float or int or str
The user can specify WS either in count or proportion of database size. If the program detects
the data type of WS is integer, then it treats WS is expressed in count. Otherwise, it will be
treated as float. Example: WS=10 will be treated as integer, while WS=10.0 will be treated
as float

regularity: float or int or str
The user can specify regularity either in count or proportion of database size. If the program
detects the data type of regularity is integer, then it treats regularity is expressed in count.
Otherwise, it will be treated as float. Example: regularity=10 will be treated as integer, while
regularity=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
separator is tab space or . However, the users can override their default separator.

oFile
[file] Name of the output file or the path of the output file

4.7. Weighted Frequent Regular Pattern Mining 231

PAMI, Release 2024.04.23

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

finalPatterns
[dict] it represents to store the patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to an output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets()
Scans the dataset or dataframes and stores in list format

frequentOneItem()
Extracts the one-frequent patterns from transactions

232 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

Execution methods

Terminal command

Format:

(.venv) $ python3 WFRIMiner.py <inputFile> <outputFile> <weightSupport> <regularity>

Example Usage:

(.venv) $ python3 WFRIMiner.py sampleDB.txt patterns.txt 10 5

Note: WS & regularity will be considered in support count or frequency

Calling from a python program

from PAMI.weightedFrequentRegularpattern.basic import WFRIMiner as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.WFRIMiner(iFile, WS, regularity)

obj.mine()

weightedFrequentRegularPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(weightedFrequentRegularPatterns))

obj.save(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

4.7. Weighted Frequent Regular Pattern Mining 233

PAMI, Release 2024.04.23

Credits

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, float]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Frequent pattern mining process will start from here

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

234 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

Returns
None

startMine()→ None
Frequent pattern mining process will start from here

4.8 Weighted Frequent Neighbourhood Pattern Mining

Weighted frequent neighborhood pattern mining involves the discovery of frequent patterns in a spatial dataset where
patterns are assigned different weights based on their significance and proximity to other patterns. Neighborhood
patterns refer to groups of spatially related objects or events that occur frequently and exhibit a regular or repeating
structure. In weighted frequent neighborhood pattern mining,the significance of a pattern is determined not only by its
frequency but also by the cumulative weights of its neighboring patterns.

Applications: Urban Planning, Environmental Monitoring, Transportation Planning.

Weighted frequent neighborhood pattern mining involves the discovery of frequent patterns in a spatial dataset where
patterns are assigned different weights based on their significance and proximity to other patterns. Neighborhood
patterns refer to groups of spatially related objects or events that occur frequently and exhibit a regular or repeating
structure. In weighted frequent neighborhood pattern mining,the significance of a pattern is determined not only by its
frequency but also by the cumulative weights of its neighboring patterns.

Applications: Urban Planning, Environmental Monitoring, Transportation Planning.

4.8.1 Basic

SWFPGrowth

class PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth(iFile: str |
DataFrame,
nFile: str |
DataFrame,
minWS: int | float
| str, sep='\t')

Bases: _weightedFrequentSpatialPatterns

About this algorithm

Description
SWFPGrowth is an algorithm to mine the weighted spatial frequent patterns in spatiotemporal
databases.

Reference
R. Uday Kiran, P. P. C. Reddy, K. Zettsu, M. Toyoda, M. Kitsuregawa and P. Krishna
Reddy, “Discovering Spatial Weighted Frequent Itemsets in Spatiotemporal Databases,” 2019
International Conference on Data Mining Workshops (ICDMW), 2019, pp. 987-996, doi:
10.1109/ICDMW.2019.00143.

param iFile
str : Name of the Input file to mine complete set of weighted Frequent Neighbourhood Patterns.

param oFile
str : Name of the output file to store complete set of weighted Frequent Neighbourhood Patterns.

4.8. Weighted Frequent Neighbourhood Pattern Mining 235

PAMI, Release 2024.04.23

param minSup
int or str or float: minimum support thresholds were tuned to find the appropriate ranges in the
limited memory

param sep
str : This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space. However, the users can override their default separator.

param maxper
floot : where maxPer represents the maximum periodicity threshold value specified by the user.

Attributes

iFile
[file] Input file name or path of the input file

minWS: float or int or str
The user can specify minWS either in count or proportion of database size. If the program
detects the data type of minWS is integer, then it treats minWS is expressed in count. Oth-
erwise, it will be treated as float. Example: minWS=10 will be treated as integer, while
minWS=10.0 will be treated as float

minWeight: float or int or str
The user can specify minWeight either in count or proportion of database size. If the program
detects the data type of minWeight is integer, then it treats minWeight is expressed in count.
Otherwise, it will be treated as float. Example: minWeight=10 will be treated as integer,
while minWeight=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
separator is tab space or . However, the users can override their default separator.

oFile
[file] Name of the output file or the path of the output file

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] it represents the total no of transactions

tree
[class] it represents the Tree class

finalPatterns
[dict] it represents to store the patterns

236 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

:Methods :

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to an output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this func-
tion

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this func-
tion

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets()
Scans the dataset or dataframes and stores in list format

frequentOneItem()
Extracts the one-frequent patterns from transactions

Execution methods

Terminal command

Format:

(.venv) $ python3 SWFPGrowth.py <inputFile> <weightFile> <outputFile> <minSup>
→˓<minWeight>

Example usage :

(.venv) $ python3 SWFPGrowth.py sampleDB.txt weightFile.txt patterns.txt 10 2

Note: minSup will be considered in support count or frequency

Calling from a python program

from PAMI.weightFrequentNeighbourhoodPattern.basic import SWFPGrowth as alg

obj = alg.SWFPGrowth(iFile, wFile, nFile, minSup, minWeight, seperator)

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

(continues on next page)

4.8. Weighted Frequent Neighbourhood Pattern Mining 237

PAMI, Release 2024.04.23

(continued from previous page)

obj.mine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getmemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, float]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

238 Chapter 4. Utility Pattern mining

PAMI, Release 2024.04.23

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Frequent pattern mining process will start from here

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Frequent pattern mining process will start from here

4.8. Weighted Frequent Neighbourhood Pattern Mining 239

PAMI, Release 2024.04.23

240 Chapter 4. Utility Pattern mining

CHAPTER

FIVE

FUZZY PATTERN MINING

A fuzzy database represents the data generated from a non-binary transactional or temporal database using
fuzzy logic.

Types

• Fuzzy transactional databases

• Fuzzy temporal databases

Fuzzy transactional databases

A fuzzy transactional database represents a set of transactions, where each transaction consists
of a transactional identifier (tid), items, and their fuzzy occurrences values. Please note that the
fuzzy occurrence values of an item lie between 0 and 1. If the fuzzy value of an item is close
zero, it implies less chance of occurrence of an item in a database. If the fuzzy value of an item
is close one, it implies high chance of occurrence of an item in a database. A sample fuzzy
transactional database generated from the set of items, I={Bread, Jam, Butter, Pen, Books,
Bat}, is shown in below table:

TID Transactions (items and their fuzzy values)
1 (Bread.High, 0.6), (Bread.Low, 0.4), (Jam.High, 0.2), (Jam.Low, 0.8), (Butter.High,

0.8), (Butter.Low, 0.2)
2 (Bat.High, 0.5), (Bat.Low, 0.5), (Ball.High, 0.6), (Ball.Low, 0.4)
3 (Pen.High, 0.2), (Pen.Low, 0.8), (Book.High, 0.3), (Book.Low, 0.7)

Format of a fuzzy transactional database

The fuzzy transactional database must exist in the following format:

>>> fuzzyitemA<sep>fuzzyitemB<sep>...<sep>fuzzyitemN:total␣
→˓fuzzyValue:fuzzyValueA<sep>fuzzyValueB<sep>...<sep>fuzzyValueN

The ‘total fuzzy value’ represents the sum of fuzzy values of all items in a transaction.

Rules to create a fuzzy database

• The default separator, i.e., , used in PAMI is tab space (or t). However, the users can override the
default separator with their choice. Since spatial objects, such as Point, Line, and Polygon, are repre-
sented using space and comma, usage of tab space facilitates us to effectively distinguish the spatial
objects.

• Items, total utility, and individual utilities of the items within a transaction have to be seperated by
the symbol ‘:’

An example

241

PAMI, Release 2024.04.23

Bread.High Bread.Low Jam.High Jam.Low Butter.High Butter.Low:3:0.6 0.4 0.2 0.8 0.8 0.2

Bat.High Bat.Low Ball.High Ball.Low:2:0.5 0.5 0.6 0.4

Pen Book:2:0.2 0.8 0.3 0.7

Fuzzy temporal databases

A fuzzy temporal database consists of timestamp, tid, items, and their corresponding fuzzy
values. A sample fuzzy temporal database generated from the set of items, I={Bread, Jam,
Butter, Pen, Books, Bat}, is shown in below table:

Times-
tamp

tid Transactions (items and their fuzzy values)

1 1 (Bread.High, 0.6), (Bread.Low, 0.4), (Jam.High, 0.2), (Jam.Low, 0.8),
(Butter.High, 0.8), (Butter.Low, 0.2)

2 2 (Bat.High, 0.5), (Bat.Low, 0.5), (Ball.High, 0.6), (Ball.Low, 0.4)
5 3 (Pen.High, 0.2), (Pen.Low, 0.8), (Book.High, 0.3), (Book.Low, 0.7)

Format of fuzzy temporal database

The fuzzy temporal database must exist in the following format:

>>> timestamp:fuzzyitemA<sep>fuzzyitemB<sep>...<sep>
→˓fuzzyitemN:total fuzzy value:fuzzyValueA<sep>fuzzyValueB<sep>.
→˓..<sep>fuzzyValueN

The ‘total fuzzy value’ represents the total fuzzy value of all items in a transaction.

Rules to create a fuzzy temporal database

• The default separator, i.e., , used in PAMI is tab space (or t). However, the users can override the
default separator with their choice. Since spatial objects, such as Point, Line, and Polygon, are repre-
sented using space and comma, usage of tab space facilitates us to effectively distinguish the spatial
objects.

• Timestamp, items, total utility, and individual utilities of the items within a transaction have to be
seperated by the symbol ‘:’

An example

1:Bread Jam Butter:3:0.6 0.4 0.2 0.8 0.8 0.2

2:Bat Ball:110:100 10

5:Pen Book:7:2 5

5.1 Fuzzy Frequent Pattern Mining

Fuzzy frequent patterns (FFPs) are patterns that capture the inherent uncertainty or fuzziness in data by allowing for
partial matching of items or events. Unlike traditional frequent patterns, which require exact matches between items
or events, fuzzy frequent patterns accommodate variations in the degree of membership or similarity between items,
making them suitable for data with uncertain or imprecise information

Applications: Medical Data Mining, Financial Analysis, Manufacturing and Quality Control.

Fuzzy frequent patterns (FFPs) are patterns that capture the inherent uncertainty or fuzziness in data by allowing for
partial matching of items or events. Unlike traditional frequent patterns, which require exact matches between items

242 Chapter 5. Fuzzy Pattern Mining

PAMI, Release 2024.04.23

or events, fuzzy frequent patterns accommodate variations in the degree of membership or similarity between items,
making them suitable for data with uncertain or imprecise information

Applications: Medical Data Mining, Financial Analysis, Manufacturing and Quality Control.

5.1.1 Basic

FFIMiner

class PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner(iFile: str, minSup: float, sep: str = '\t')
Bases: _fuzzyFrequentPattenrs

Description
Fuzzy Frequent Pattern-Miner is desired to find all frequent fuzzy patterns which is on-trivial
and challenging problem to its huge search space.we are using efficient pruning techniques to
reduce the search space.

Reference
Lin, Chun-Wei & Li, Ting & Fournier Viger, Philippe & Hong, Tzung-Pei. (2015). A
fast Algorithm for mining fuzzy frequent itemsets. Journal of Intelligent & Fuzzy Systems.
29. 2373-2379. 10.3233/IFS-151936. https://www.researchgate.net/publication/286510908_
A_fast_Algorithm_for_mining_fuzzy_frequent_itemSets

Parameters

• iFile – str : Name of the Input file to mine complete set of frequent patterns

• oFile – str : Name of the output file to store complete set of frequent patterns

• minSup – int or float or str : The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float.

• maxPer – float : The user can specify maxPer in count or proportion of database size. If
the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count.

• fuzFile – str : The user can specify fuzFile.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[string] Name of the input file to mine complete set of fuzzy frequent patterns

fmFile
[string] Name of the fuzzy membership file to mine complete set of fuzzy frequent patterns

oFile
[string] Name of the oFile file to store complete set of fuzzy frequent patterns

minSup
[float] The user given minimum support

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

5.1. Fuzzy Frequent Pattern Mining 243

https://www.researchgate.net/publication/286510908_A_fast_Algorithm_for_mining_fuzzy_frequent_itemSets
https://www.researchgate.net/publication/286510908_A_fast_Algorithm_for_mining_fuzzy_frequent_itemSets

PAMI, Release 2024.04.23

endTime:float
To record the completion time of the mining process

itemsCnt: int
To record the number of fuzzy spatial itemSets generated

mapItemSum: map
To keep track of sum of Fuzzy Values of items

joinsCnt: int
To keep track of the number of ffi-list that was constructed

BufferSize: int
represent the size of Buffer

itemSetBuffer list
to keep track of items in buffer

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

convert(value)
To convert the given user specified value

compareItems(o1, o2)
A Function that sort all ffi-list in ascending order of Support

FSFIMining(prefix, prefixLen, FSFIM, minSup)
Method generate ffi from prefix

construct(px, py)
A function to construct Fuzzy itemSet from 2 fuzzy itemSets

findElementWithTID(uList, tid)
To find element with same tid as given

WriteOut(prefix, prefixLen, item, sumIUtil)
To Store the patten

244 Chapter 5. Fuzzy Pattern Mining

PAMI, Release 2024.04.23

Executing the code on terminal :

Format:

(.venv) $ python3 FFIMiner.py <inputFile> <outputFile> <minSup> <separator>

Example Usage:

(.venv) $ python3 FFIMiner.py sampleTDB.txt output.txt 6

Note: minSup will be considered in percentage of database transactions

Sample run of importing the code:

from PAMI.fuzzyFrequentPattern import FFIMiner as alg

obj = alg.FFIMiner("input.txt", 2)

obj.mine()

fuzzyFrequentPattern = obj.getPatterns()

print("Total number of Fuzzy Frequent Patterns:", len(fuzzyFrequentPattern))

obj.save("outputFile")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by B.Sai Chitra under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

5.1. Fuzzy Frequent Pattern Mining 245

PAMI, Release 2024.04.23

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ dict
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
fuzzy-Frequent pattern mining process will start from here

printResults()→ None
This function is used to print the results

save(outFile)→ dict
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
dictionary of frequent patterns

Return type
dict

startMine()→ None
fuzzy-Frequent pattern mining process will start from here

246 Chapter 5. Fuzzy Pattern Mining

PAMI, Release 2024.04.23

5.2 Fuzzy Correlated Pattern Mining

Fuzzy correlated pattern mining involves the exploration of associations between fuzzy itemsets that exhibit linear
relationships,as assessed through fuzzy correlation analysis. Instead of solely relying on co-occurrence frequencies,
this approach considers the strength and type of correlation between fuzzy itemsets to uncover meaningful patterns.

Applications: Market Basket Analysis, Healthcare Analytics, Financial Forecasting.

Fuzzy correlated pattern mining involves the exploration of associations between fuzzy itemsets that exhibit linear
relationships,as assessed through fuzzy correlation analysis. Instead of solely relying on co-occurrence frequencies,
this approach considers the strength and type of correlation between fuzzy itemsets to uncover meaningful patterns.

Applications: Market Basket Analysis, Healthcare Analytics, Financial Forecasting.

5.2.1 Basic

FCPGrowth

class PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.Element(tid: int, IUtil: float, RUtil: float)
Bases: object

A class represents an Element of a fuzzy list

Attributes

tid
[int] keep tact of transaction id

IUtils: float
the utility of a fuzzy item in the transaction

RUtil
[float] the neighbourhood resting value of a fuzzy item in the transaction

class PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth(iFile: str, minSup: int, minAllConf:
float, sep: str = '\t')

Bases: _corelatedFuzzyFrequentPatterns

Description
FCPGrowth is the algorithm to discover Correlated Fuzzy-frequent patterns in a transactional
database. it is based on traditional fuzzy frequent pattern mining.

Reference
Lin, N.P., & Chueh, H. (2007). Fuzzy correlation rules mining. https://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.416.6053&rep=rep1&type=pdf

Parameters

• iFile – str : Name of the Input file to mine complete set of frequent patterns

• oFile – str : Name of the output file to store complete set of frequent patterns

• minSup – int or float or str : The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float.

• maxPer – float : The user can specify maxPer in count or proportion of database size. If
the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count.

5.2. Fuzzy Correlated Pattern Mining 247

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.6053&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.6053&rep=rep1&type=pdf

PAMI, Release 2024.04.23

• minAllConf – float : The user can specify minAllConf values within the range (0, 1).

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the input file to mine complete set of fuzzy spatial frequent patterns

oFile
[file] Name of the oFile file to store complete set of fuzzy spatial frequent patterns

minSup
[int] The user given support

minAllConf: float
user Specified minAllConf(should be in range 0 and 1)

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTimeTime:float
To record the startTime time of the mining process

endTime:float
To record the completion time of the mining process

itemsCnt: int
To record the number of fuzzy spatial itemSets generated

mapItemsLowSum: map
To keep track of low region values of items

mapItemsMidSum: map
To keep track of middle region values of items

mapItemsHighSum: map
To keep track of high region values of items

mapItemSum: map
To keep track of sum of Fuzzy Values of items

mapItemRegions: map
To Keep track of fuzzy regions of item

jointCnt: int
To keep track of the number of FFI-list that was constructed

BufferSize: int
represent the size of Buffer

itemBuffer list
to keep track of items in buffer

Methods

startTimeMine()
Mining process will startTime from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

248 Chapter 5. Fuzzy Pattern Mining

PAMI, Release 2024.04.23

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

getRatio(self, prefix, prefixLen, item)
Method to calculate the ration of itemSet

convert(value):
To convert the given user specified value

FSFIMining(prefix, prefixLen, fsFim, minSup)
Method generate FFI from prefix

construct(px, py)
A function to construct Fuzzy itemSet from 2 fuzzy itemSets

findElementWithTID(uList, tid)
To find element with same tid as given

WriteOut(prefix, prefixLen, item, sumIUtil,ratio)
To Store the patten

Executing the code on terminal :

Format:

(.venv) $ python3 FCPGrowth.py <inputFile> <outputFile> <minSup> <minAllConf> <sep>

Example Usage:

(.venv) $ python3 FCPGrowth.py sampleTDB.txt output.txt 2 0.2

Note: minSup will be considered in percentage of database transactions

Sample run of importing the code:

from PAMI.fuzzyCorrelatedPattern.basic import FCPGrowth as alg

obj = alg.FCPGrowth("input.txt",2,0.4)

obj.mine()

correlatedFuzzyFrequentPatterns = obj.getPatterns()
(continues on next page)

5.2. Fuzzy Correlated Pattern Mining 249

PAMI, Release 2024.04.23

(continued from previous page)

print("Total number of Correlated Fuzzy Frequent Patterns:",␣
→˓len(correlatedFuzzyFrequentPatterns))

obj.save("output")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by B.Sai Chitra under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, List[float]]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

250 Chapter 5. Fuzzy Pattern Mining

PAMI, Release 2024.04.23

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Frequent pattern mining process will startTime from here

printResults()→ None
This function is used to print the result

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

startMine()→ None
Frequent pattern mining process will startTime from here

PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.main()

5.3 Fuzzy Geo-referenced Frequent Pattern Mining

Fuzzy geo-referenced frequent pattern mining refers to the process of discovering patterns in spatial data that occur
frequently and exhibit fuzzy relationships or uncertainties. These patterns are identified based on their geographical
references and may involve fuzzy spatial attributes or relationships between spatial objects.

Applications: Retail and Marketing, Healthcare and Epidemiology, Environmental Monitoring.

Fuzzy geo-referenced frequent pattern mining refers to the process of discovering patterns in spatial data that occur
frequently and exhibit fuzzy relationships or uncertainties. These patterns are identified based on their geographical
references and may involve fuzzy spatial attributes or relationships between spatial objects.

Applications: Retail and Marketing, Healthcare and Epidemiology, Environmental Monitoring.

5.3.1 Basic

FFSPMiner

class PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner(iFile: str, nFile: str,
minSup: float, sep: str
= '\t')

Bases: _fuzzySpatialFrequentPatterns

5.3. Fuzzy Geo-referenced Frequent Pattern Mining 251

PAMI, Release 2024.04.23

About this algorithm

Description
Fuzzy Frequent Spatial Pattern-Miner is desired to find all Spatially frequent fuzzy patterns which
is on-trivial and challenging problem to its huge search space.we are using efficient pruning
techniques to reduce the search space.

Reference
Reference: P. Veena, B. S. Chithra, R. U. Kiran, S. Agarwal and K. Zettsu, “Discover-
ing Fuzzy Frequent Spatial Patterns in Large Quantitative Spatiotemporal databases,” 2021
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2021, pp. 1-8, doi:
10.1109/FUZZ45933.2021.9494594.

param iFile
str : Name of the Input file to mine complete set of frequent patterns

param oFile
str : Name of the output file to store complete set of frequent patterns

param minSup
int or float or str : The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float.

param maxPer
float : The user can specify maxPer in count or proportion of database size. If the program detects
the data type of maxPer is integer, then it treats maxPer is expressed in count.

param nFile
str : Name of the input file to mine complete set of frequent patterns

param sep
str : This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the input file to mine complete set of fuzzy spatial frequent patterns

oFile
[file] Name of the oFile file to store complete set of fuzzy spatial frequent patterns

minSup
[float] The user given minimum support

neighbors
[map] keep track of neighbours of elements

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

itemsCnt
[int] To record the number of fuzzy spatial itemSets generated

252 Chapter 5. Fuzzy Pattern Mining

PAMI, Release 2024.04.23

mapItemSum
[map] To keep track of sum of Fuzzy Values of items

mapItemRegions
[map] To Keep track of fuzzy regions of item

joinsCnt
[int] To keep track of the number of FFI-list that was constructed

BufferSize
[int] represent the size of Buffer

itemSetBuffer
[list] to keep track of items in buffer

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

convert(value)
To convert the given user specified value

FSFIMining(prefix, prefixLen, fsFim, minSup)
Method generate FFI from prefix

construct(px, py)
A function to construct Fuzzy itemSet from 2 fuzzy itemSets

Intersection(neighbourX,neighbourY)
Return common neighbours of 2 itemSet Neighbours

findElementWithTID(uList, tid)
To find element with same tid as given

WriteOut(prefix, prefixLen, item, sumIUtil,period)
To Store the patten

5.3. Fuzzy Geo-referenced Frequent Pattern Mining 253

PAMI, Release 2024.04.23

Execution methods

Terminal command

Format:

(.venv) $ python3 FFSPMiner.py <inputFile> <outputFile> <neighbours> <minSup> <sep>

Example Usage:

(.venv) $ python3 FFSPMiner.py sampleTDB.txt output.txt sampleN.txt 3

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

from PAMI.fuzzyGeoreferencedFrequentPattern import FFSPMiner as alg

obj = alg.FFSPMiner("input.txt", "neighbours.txt", 2)

obj.mine()

fuzzySpatialFrequentPatterns = obj.getPatterns()

print("Total number of fuzzy frequent spatial patterns:",␣
→˓len(fuzzySpatialFrequentPatterns))

obj.save("outputFile")

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits

The complete program was written by B.Sai Chitra under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

254 Chapter 5. Fuzzy Pattern Mining

PAMI, Release 2024.04.23

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, str]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Frequent pattern mining process will start from here

Returns
None

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Frequent pattern mining process will start from here

Returns
None

5.3. Fuzzy Geo-referenced Frequent Pattern Mining 255

PAMI, Release 2024.04.23

5.4 Fuzzy Periodic Frequent Pattern Mining

Fuzzy periodic frequent patterns refer to recurring patterns in temporal data where the occurrences exhibit fuzzy rela-
tionships or uncertainties. These patterns are characterized by their periodic nature and may involve imprecise or fuzzy
temporal attributes or relationships between events.

Applications: Financial Time Series Analysis, Manufacturing and Production Processes, Network Traffic Analysis.

Fuzzy periodic frequent patterns refer to recurring patterns in temporal data where the occurrences exhibit fuzzy rela-
tionships or uncertainties. These patterns are characterized by their periodic nature and may involve imprecise or fuzzy
temporal attributes or relationships between events.

Applications: Financial Time Series Analysis, Manufacturing and Production Processes, Network Traffic Analysis.

5.4.1 Basic

FPFPMiner

class PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner(iFile: str | DataFrame,
minSup: int | float, period: int
| float, sep: str = '\t')

Bases: _fuzzyPeriodicFrequentPatterns

Description
Fuzzy Periodic Frequent Pattern Miner is desired to find all fuzzy periodic frequent patterns
which is on-trivial and challenging problem to its huge search space.we are using efficient pruning
techniques to reduce the search space.

Reference
R. U. Kiran et al., “Discovering Fuzzy Periodic-Frequent Patterns in Quantitative Temporal
Databases,” 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow,
UK, 2020, pp. 1-8, doi: 10.1109/FUZZ48607.2020.9177579.

Parameters

• iFile – str : Name of the Input file to mine complete set of frequent patterns

• oFile – str : Name of the output file to store complete set of frequent patterns

• minSup – int or float or str : The user can specify minSup either in count or proportion of
database size. If the program detects the data type of minSup is integer, then it treats minSup
is expressed in count. Otherwise, it will be treated as float.

• maxPer – float : The user can specify maxPer in count or proportion of database size. If
the program detects the data type of maxPer is integer, then it treats maxPer is expressed in
count.

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the input file to mine complete set of fuzzy spatial frequent patterns

oFile
[file] Name of the oFile file to store complete set of fuzzy spatial frequent patterns

256 Chapter 5. Fuzzy Pattern Mining

PAMI, Release 2024.04.23

minSup
[float] The user given support

period: int
periodicity of an element

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

itemsCnt: int
To record the number of fuzzy spatial itemSets generated

mapItemsLowSum: map
To keep track of low region values of items

mapItemsMidSum: map
To keep track of middle region values of items

mapItemsHighSum: map
To keep track of high region values of items

mapItemSum: map
To keep track of sum of Fuzzy Values of items

mapItemRegions: map
To Keep track of fuzzy regions of item

jointCnt: int
To keep track of the number of FFI-list that was constructed

BufferSize: int
represent the size of Buffer

itemBuffer list
to keep track of items in buffer

maxTID: int
represent the maximum tid of the database

lastTIDs: map
represent the last tid of fuzzy items

itemsToRegion: map
represent items with respective regions

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

5.4. Fuzzy Periodic Frequent Pattern Mining 257

PAMI, Release 2024.04.23

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

convert(value):
To convert the given user specified value

FSFIMining(prefix, prefixLen, fsFim, minSup)
Method generate FFI from prefix

construct(px, py)
A function to construct Fuzzy itemSet from 2 fuzzy itemSets

findElementWithTID(UList, tid)
To find element with same tid as given

WriteOut(prefix, prefixLen, item, sumIUtil,period)
To Store the patten

Executing the code on terminal :

Format:

(.venv) $ python3 FPFPMiner.py <inputFile> <outputFile> <minSup> <maxPer> <sep>

Example Usage:

(.venv) $ python3 FPFPMiner.py sampleTDB.txt output.txt 2 3

Note: minSup will be considered in percentage of database transactions

Sample run of importing the code:

from PAMI.fuzzyPeriodicFrequentPattern.basic import FPFPMiner as alg

obj =alg.FPFPMiner(“input.txt”,2,3)

obj.mine()

periodicFrequentPatterns = obj.getPatterns()

print(“Total number of Fuzzy Periodic Frequent Patterns:”, len(periodicFrequentPatterns))

obj.save(“output.txt”)

memUSS = obj.getMemoryUSS()

print(“Total Memory in USS:”, memUSS)

memRSS = obj.getMemoryRSS()

258 Chapter 5. Fuzzy Pattern Mining

PAMI, Release 2024.04.23

print(“Total Memory in RSS”, memRSS)

run = obj.getRuntime()

print(“Total ExecutionTime in seconds:”, run)

Credits:

The complete program was written by Sai Chitra.B under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, str]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Fuzzy periodic Frequent pattern mining process will start from here

5.4. Fuzzy Periodic Frequent Pattern Mining 259

PAMI, Release 2024.04.23

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Fuzzy periodic Frequent pattern mining process will start from here

5.5 Fuzzy Geo-referenced Periodic Frequent Pattern Mining

Fuzzy geo-referenced periodic frequent pattern mining involves the discovery of recurring patterns in spatial-temporal
data where the occurrences exhibit fuzzy relationships or uncertainties and are associated with geographical locations.
These patterns capture the repetitive nature of events or phenomena over time and space, while considering imprecise
or fuzzy attributes and relationships between spatial-temporal entities.

Applications: Traffic Flow Analysis, Environmental Monitoring, Epidemiological Studies.

Fuzzy geo-referenced periodic frequent pattern mining involves the discovery of recurring patterns in spatial-temporal
data. where the occurrences exhibit fuzzy relationships or uncertainties and are associated with geographical locations.
These patterns capture the repetitive nature of events or phenomena over time and space, while considering imprecise
or fuzzy attributes and relationships between spatial-temporal entities.

Applications: Traffic Flow Analysis, Environmental Monitoring, Epidemiological Studies.

5.5.1 Basic

FGPFPMiner

class PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner(iFile,
nFile,
minSup,
maxPer,
sep)

Bases: _fuzzySpatialFrequentPatterns

About this algorithm

Description
Fuzzy Frequent Spatial Pattern-Miner is desired to find all Spatially frequent fuzzy patterns which
is on-trivial and challenging problem to its huge search space.we are using efficient pruning
techniques to reduce the search space.

Reference
param iFile

str : Name of the Input file to mine complete set of frequent patterns

260 Chapter 5. Fuzzy Pattern Mining

PAMI, Release 2024.04.23

param oFile
str : Name of the output file to store complete set of frequent patterns

param minSup
int or float or str : The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float.

param maxPer
float : The user can specify maxPer in count or proportion of database size. If the program detects
the data type of maxPer is integer, then it treats maxPer is expressed in count.

param nFile
str : Name of the input file to mine complete set of frequent patterns

param FuzFile
str : The user can specify fuzFile.

param sep
str : This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the input file to mine complete set of fuzzy spatial frequent patterns

oFile
[file] Name of the oFile file to store complete set of fuzzy spatial frequent patterns

minSup
[float] The user given minimum support

neighbors
[map] keep track of neighbours of elements

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

itemsCnt
[int] To record the number of fuzzy spatial itemSets generated

mapItemSum
[map] To keep track of sum of Fuzzy Values of items

joinsCnt
[int] To keep track of the number of FFI-list that was constructed

BufferSize
[int] represent the size of Buffer

itemSetBuffer list
to keep track of items in buffer

Methods

mine()
Mining process will start from here

5.5. Fuzzy Geo-referenced Periodic Frequent Pattern Mining 261

PAMI, Release 2024.04.23

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

convert(value)
To convert the given user specified value

FSFIMining(prefix, prefixLen, fsFim, minSup)
Method generate FFI from prefix

construct(px, py)
A function to construct Fuzzy itemSet from 2 fuzzy itemSets

Intersection(neighbourX,neighbourY)
Return common neighbours of 2 itemSet Neighbours

findElementWithTID(uList, tid)
To find element with same tid as given

WriteOut(prefix, prefixLen, item, sumIUtil,period)
To Store the patten

Execution methods =================-

Format:

(.venv) $ python3 FGPFPMiner.py <inputFile> <outputFile> <neighbours> <minSup>
→˓<maxPer> <sep>

Example Usage:

(.venv) $ python3 FGPFPMiner.py sampleTDB.txt output.txt sampleN.txt 3 4

Note: minSup will be considered in percentage of database transactions

Calling from a python program

from PAMI.fuzzyGeoreferencedPeriodicFrequentPattern import FGPFPMiner as alg

obj = alg.FFSPMiner("input.txt", "neighbours.txt", 3, 4)

obj.mine()
(continues on next page)

262 Chapter 5. Fuzzy Pattern Mining

PAMI, Release 2024.04.23

(continued from previous page)

print("Total number of fuzzy frequent spatial patterns:", len(obj.getPatterns()))

obj.save("outputFile")

print("Total Memory in USS:", obj.getMemoryUSS())

print("Total Memory in RSS", obj.getMemoryRSS())

print("Total ExecutionTime in seconds:", obj.getRuntime())

Credits

The complete program was written by B.Sai Chitra under the supervision of Professor Rage Uday
Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

5.5. Fuzzy Geo-referenced Periodic Frequent Pattern Mining 263

PAMI, Release 2024.04.23

Return type
float

mine()

Frequent pattern mining process will start from here

printResults()

This function is used to print the result

save(outFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

startMine()

Frequent pattern mining process will start from here

264 Chapter 5. Fuzzy Pattern Mining

CHAPTER

SIX

UNCERTAIN DATABASE

An uncertain database is a non-binary database, where an occurrence of an item in a transaction is asso-
ciated with a probabilistic value that lies between zero and one. The value zero represents the complete
non-occurrence of an item, while the value represents the perfect occurrence of an item in a transaction.

Currently, the algorithms in PAMI support the discovery of knowledge hidden in two types of uncertain
databases, namely uncertain transactional database and uncertain temporal database. We now describe
each of these databases.

Types

• Uncertain transactional database

• Uncertain temporal database

Uncertain transactional database

An uncertain transactional database consists of a transactional identifier (tid), items, and their occurrence
probability value. A sample uncertain transactional database generated from the set of items, I={Bread,
Jam, Butter, Pen, Books, Bat}, is shown in below table:

TID Transactions (items and their prices)
1 (Bread,0.9), (Jam,0.7), (Butter, 0.1)
2 (Bat, 1), (Ball, 0.5)
3 (Pen, 0.2), (Book, 0.5)

Note: The above uncertain database represents an uncertain transactional database. If every transaction
in an uncertain database is associated with a timestamp, then we call that database an uncertain temporal
database.

Format to create uncertain transactional databases in PAMI

An utility transactional database must exist in the following format:

>>> itemA<sep>itemB<sep>...<sep>itemN:total probability:probabilityA
→˓<sep>probabilityB<sep>...<sep>probabilityN

The ‘total probability’ represents the sum of probabilities of all items in a transaction.

Rules to create a uncertain transactional databases

• The default separator, i.e., , used in PAMI is tab space (or t). However, the users can override the
default separator with their choice. Since spatial objects, such as Point, Line, and Polygon, are repre-
sented using space and comma, usage of tab space facilitates us to effectively distinguish the spatial
objects.

265

PAMI, Release 2024.04.23

• Items, total probability, and individual probabilities of the items within a transaction have to be
seperated by the symbol ‘:’

• The probability values of an item must be within the range [0,1].

An example of an uncertain transactional database

Bread Jam Butter:1.7:0.9 0.7 0.1 Bat Ball:1.5:1 0.5 Pen Book:0.7:0.2

Uncertain temporal database

Introduction

An uncertain temporal database consists of a transactional identifier (tid), a timestamp, items, and their
occurrence probability value. A sample uncertain temporal database generated from the set of items,
I={Bread, Jam, Butter, Pen, Books, Bat}, is shown in below table:

TID TS Transactions (items and their prices)
1 1 (Bread,0.9), (Jam,0.7), (Butter, 0.1)
2 4 (Bat, 1), (Ball, 0.5)
3 5 (Pen, 0.2), (Book, 0.5)

Format to create an uncertain temporal databases in PAMI

An utility temporal database must exist in the following format:

>>> timestamp<sep>itemA<sep>itemB<sep>...<sep>itemN:total␣
→˓probability:probabilityA<sep>probabilityB<sep>...<sep>probabilityN

The ‘total probability’ represents the sum of probabilities of all items in a transaction.

Rules to create an uncertain temporal databases

• First element in every transaction must be a timestamp.

• The default separator, i.e., , used in PAMI is tab space (or t). However, the users can override the
default separator with their choice. Since spatial objects, such as Point, Line, and Polygon, are repre-
sented using space and comma, usage of tab space facilitates us to effectively distinguish the spatial
objects.

• Items, total probability, and individual probabilities of the items within a transaction have to be
seperated by the symbol ‘:’

• The probability values of an item must be within the range [0,1].

An example of an uncertain temporal database

1 Bread Jam Butter:1.7:0.9 0.7 0.1

2 Bat Ball:1.5:1 0.5

3 Pen Book:0.7:0.2 0.5

266 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

6.1 Uncertain Frequent Pattern mining

Uncertain frequent pattern mining is a data mining task that involves the discovery of frequent patterns from datasets
containing uncertain or probabilistic data. Unlike traditional frequent pattern mining, where the data is precise and
deterministic, uncertain frequent pattern mining deals with data in which the values or attributes have associated prob-
abilities or uncertainties.

Applications: Healthcare, Finance, Environmental Science.

Uncertain frequent pattern mining is a data mining task that involves the discovery of frequent patterns from datasets
containing uncertain or probabilistic data. Unlike traditional frequent pattern mining, where the data is precise and
deterministic, uncertain frequent pattern mining deals with data in which the values or attributes have associated prob-
abilities or uncertainties.

Applications: Healthcare, Finance, Environmental Science.

6.1.1 Basic

CUFPTree

class PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree(iFile, minSup, sep='\t')
Bases: _frequentPatterns

About this algorithm

Description
It is one of the fundamental algorithm to discover frequent patterns in a uncertain transactional
database using CUFP-Tree.

Reference
Chun-Wei Lin Tzung-PeiHong, ‘new mining approach for uncertain databases using CUFP trees’,
Expert Systems with Applications, Volume 39, Issue 4, March 2012, Pages 4084-4093, https:
//doi.org/10.1016/j.eswa.2011.09.087

param iFile
str : Name of the Input file to mine complete set of Uncertain Frequent Patterns

param oFile
str : Name of the output file to store complete set of Uncertain frequent patterns

param minSup
int or float or str : minimum support thresholds were tuned to find the appropriate ranges in the
limited memory

param sep
str : This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

6.1. Uncertain Frequent Pattern mining 267

https://doi.org/10.1016/j.eswa.2011.09.087
https://doi.org/10.1016/j.eswa.2011.09.087

PAMI, Release 2024.04.23

minSup: float or int or str
The user can specify minSup either in count or proportion of database size. If the program
detects the data type of minSup is integer, then it treats minSup is expressed in count. Oth-
erwise, it will be treated as float. Example: minSup=10 will be treated as integer, while
minSup=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] To represent the total no of transaction

tree
[class] To represents the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

268 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

frequentOneItem()
Extracts the one-length frequent patterns from database

updateTransactions()
Update the transactions by removing non-frequent items and sort the Database by item de-
creased support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

convert()
to convert the user specified value

startMine()
Mining process will start from this function

Execution methods

Terminal command

Format:

(.venv) $ python3 CUFPTree.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 CUFPTree.py sampleTDB.txt patterns.txt 3

Note: minSup will be considered in support count or frequency

Calling from a python program

from PAMI.uncertainFrequentPattern.basic import CUFPTree as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.CUFPTree(iFile, minSup)

obj.mine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)
(continues on next page)

6.1. Uncertain Frequent Pattern mining 269

PAMI, Release 2024.04.23

(continued from previous page)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ dict
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

270 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns.

Returns
None

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns.

Returns
None

PUFGrowth

class PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth(iFile, minSup, sep='\t')
Bases: _frequentPatterns

About this algorithm

Description
It is one of the fundamental algorithm to discover frequent patterns in a uncertain transactional
database using PUF-Tree.

Reference
Carson Kai-Sang Leung, Syed Khairuzzaman Tanbeer, “PUF-Tree: A Compact Tree Struc-
ture for Frequent Pattern Mining of Uncertain Data”, Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining(PAKDD 2013), https://link.springer.com/chapter/10.1007/
978-3-642-37453-1_2

Attributes

iFile
[file] Name of the Input file or path of the input file

6.1. Uncertain Frequent Pattern mining 271

https://link.springer.com/chapter/10.1007/978-3-642-37453-1_2
https://link.springer.com/chapter/10.1007/978-3-642-37453-1_2

PAMI, Release 2024.04.23

oFile
[file] Name of the output file or path of the output file

minSup
[float or int or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] To represent the total no of transaction

tree
[class] To represents the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

272 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

frequentOneItem()
Extracts the one-length frequent patterns from database

updateTransactions()
Update the transactions by removing non-frequent items and sort the Database by item de-
creased support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

convert()
to convert the user specified value

startMine()
Mining process will start from this function

Execution methods

Terminal command

Format:

(.venv) $ python3 PUFGrowth.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 PUFGrowth.py sampleDB.txt patterns.txt 10.0

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

from PAMI.uncertainFrequentPattern.basic import puf as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.PUFGrowth(iFile, minSup)

obj.startmine()

frequentPatterns = obj.getPatterns()

(continues on next page)

6.1. Uncertain Frequent Pattern mining 273

PAMI, Release 2024.04.23

(continued from previous page)

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getmemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ dict
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

274 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

startMine()→ None
Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns

TUFP

class PAMI.uncertainFrequentPattern.basic.TUFP.TUFP(iFile, minSup, sep='\t')
Bases: _frequentPatterns

About this algorithm

Description
It is one of the fundamental algorithm to discover top-k frequent patterns in a uncertain transac-
tional database using CUP-Lists.

Reference
Tuong Le, Bay Vo, Van-Nam Huynh, Ngoc Thanh Nguyen, Sung Wook Baik 5, “Mining top-k
frequent patterns from uncertain databases”, Springer Science+Business Media, LLC, part of
Springer Nature 2020, https://doi.org/10.1007/s10489-019-01622-1

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup
[float or int or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

6.1. Uncertain Frequent Pattern mining 275

https://doi.org/10.1007/s10489-019-01622-1

PAMI, Release 2024.04.23

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] To represent the total no of transaction

tree
[class] To represents the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

storePatternsInFile(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsInDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

frequentOneItem()
Extracts the one-length frequent patterns from database

276 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

updateTransactions()
Update the transactions by removing non-frequent items and sort the Database by item de-
creased support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

convert()
to convert the user specified value

startMine()
Mining process will start from this function

Execution methods

Terminal command

Format:

(.venv) $ python3 TUFP.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 TUFP.py sampleDB.txt patterns.txt 0.6

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

from PAMI.uncertainFrequentPattern.basic import TUFP as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.TUFP(iFile, minSup)

obj.startMine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()
(continues on next page)

6.1. Uncertain Frequent Pattern mining 277

PAMI, Release 2024.04.23

(continued from previous page)

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, float]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

278 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

mine()→ None
Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (file) – name of the output file

startMine()→ None
Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns

TubeP

class PAMI.uncertainFrequentPattern.basic.TubeP.TUFP(iFile, minSup, sep='\t')
Bases: _frequentPatterns

About this algorithm

Description
It is one of the fundamental algorithm to discover top-k frequent patterns in a uncertain transac-
tional database using CUP-Lists.

Reference
Tuong Le, Bay Vo, Van-Nam Huynh, Ngoc Thanh Nguyen, Sung Wook Baik 5, “Mining top-k
frequent patterns from uncertain databases”, Springer Science+Business Media, LLC, part of
Springer Nature 2020, https://doi.org/10.1007/s10489-019-01622-1

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup
[float or int or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

6.1. Uncertain Frequent Pattern mining 279

https://doi.org/10.1007/s10489-019-01622-1

PAMI, Release 2024.04.23

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] To represent the total no of transaction

tree
[class] To represents the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

storePatternsInFile(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsInDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

frequentOneItem()
Extracts the one-length frequent patterns from database

updateTransactions()
Update the transactions by removing non-frequent items and sort the Database by item de-
creased support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

280 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

convert()
to convert the user specified value

startMine()
Mining process will start from this function

Execution methods

Terminal command

Format:

(.venv) $ python3 TUFP.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 TUFP.py sampleDB.txt patterns.txt 10.0

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

from PAMI.uncertainFrequentPattern.basic import TUFP as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.TUFP(iFile, minSup)

obj.mine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getmemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

6.1. Uncertain Frequent Pattern mining 281

PAMI, Release 2024.04.23

Credits

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, float]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (file) – name of the output file

282 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

startMine()→ None
Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns

TubeS

PAMI.uncertainFrequentPattern.basic.TubeS.Second(transaction, i)
To calculate the second probability of a node in transaction

Parameters

• transaction – transaction in a database

• i – index of item in transaction

Returns
second probability of a node

class PAMI.uncertainFrequentPattern.basic.TubeS.TubeS(iFile, minSup, sep='\t')
Bases: _frequentPatterns

About this algorithm

Description
TubeS is one of the fastest algorithm to discover frequent patterns in a uncertain transactional
database.

Reference
Carson Kai-Sang Leung and Richard Kyle MacKinnon. 2014. Fast Algorithms for Frequent
Itemset Mining from Uncertain Data. In Proceedings of the 2014 IEEE International Conference
on Data Mining (ICDM ‘14). IEEE Computer Society, USA, 893–898. https://doi.org/10.1109/
ICDM.2014.146

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup
[float or int or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime
[float] To record the start time of the mining process

6.1. Uncertain Frequent Pattern mining 283

https://doi.org/10.1109/ICDM.2014.146
https://doi.org/10.1109/ICDM.2014.146

PAMI, Release 2024.04.23

endTime
[float] To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] To represent the total no of transaction

tree
[class] To represents the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

frequentOneItem()
Extracts the one-length frequent patterns from database

updateTransactions()
Update the transactions by removing non-frequent items and sort the Database by item de-
creased support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

convert()
to convert the user specified value

284 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

Execution methods

Terminal command

Format:

(.venv) $ python3 TubeS.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 TubeS.py sampleDB.txt patterns.txt 10.0

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

from PAMI.uncertainFrequentPattern.basic import TubeS as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.TubeS(iFile, minSup)

obj.mine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

6.1. Uncertain Frequent Pattern mining 285

PAMI, Release 2024.04.23

Credits

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()

Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns

printResults()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (file) – name of the output file

286 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

updateTransactions(dict1)
Remove the items which are not frequent from transactions and updates the transactions with rank of items

:param dict1 : frequent items with support :type dict1 : dictionary

PAMI.uncertainFrequentPattern.basic.TubeS.printTree(root)
To print the tree with root node through recursion

Parameters
root – root node of tree

Returns
details of tree

UFGrowth

class PAMI.uncertainFrequentPattern.basic.UFGrowth.UFGrowth(iFile, minSup, sep='\t')
Bases: _frequentPatterns

Description
It is one of the fundamental algorithm to discover frequent patterns in a uncertain transactional
database using PUF-Tree.

Reference
Carson Kai-Sang Leung, Syed Khairuzzaman Tanbeer, “PUF-Tree: A Compact Tree Struc-
ture for Frequent Pattern Mining of Uncertain Data”, Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining(PAKDD 2013), https://link.springer.com/chapter/10.1007/
978-3-642-37453-1_2

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup
[float or int or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

6.1. Uncertain Frequent Pattern mining 287

https://link.springer.com/chapter/10.1007/978-3-642-37453-1_2
https://link.springer.com/chapter/10.1007/978-3-642-37453-1_2

PAMI, Release 2024.04.23

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] To represent the total no of transaction

tree
[class] To represents the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

frequentOneItem()
Extracts the one-length frequent patterns from database

updateTransactions()
Update the transactions by removing non-frequent items and sort the Database by item de-
creased support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

convert()
to convert the user specified value

startMine()
Mining process will start from this function

288 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

Methods to execute code on terminal

Format:

>>> python3 PUFGrowth.py <inputFile> <outputFile> <minSup>

Example:

>>> python3 PUFGrowth.py sampleTDB.txt patterns.txt 3

Note: minSup will be considered in support count or frequency

Importing this algorithm into a python program

from PAMI.uncertainFrequentPattern.basic import UFGrowth as alg

obj = alg.UFGrowth(iFile, minSup)

obj.startMine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getmemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

6.1. Uncertain Frequent Pattern mining 289

PAMI, Release 2024.04.23

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function :return:
returning RSS memory consumed by the mining process :rtype: float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function :return:
returning USS memory consumed by the mining process :rtype: float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process :return: returning
frequent patterns :rtype: dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe :return: returning frequent patterns in a dataframe :rtype:
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process :return: returning total amount of
runtime taken by the mining process :rtype: float

mine()

Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns

printResults()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file :param outFile: name of the output file
:type outFile: csv file

UVECLAT

class PAMI.uncertainFrequentPattern.basic.UVECLAT.UVEclat(iFile, minSup, sep='\t')
Bases: _frequentPatterns

About this algorithm

Description
It is one of the fundamental algorithm to discover frequent patterns in an uncertain transactional
database using PUF-Tree.

Reference
Carson Kai-Sang Leung, Lijing Sun: “Equivalence class transformation based mining of frequent
itemsets from uncertain data”, SAC ‘11: Proceedings of the 2011 ACM Symposium on Applied
ComputingMarch, 2011, Pages 983–984, https://doi.org/10.1145/1982185.1982399

Attributes

iFile
[file] Name of the Input file or path of the input file

290 Chapter 6. Uncertain Database

https://doi.org/10.1145/1982185.1982399

PAMI, Release 2024.04.23

oFile
[file] Name of the output file or path of the output file

minSup
[float or int or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] To represent the total no of transaction

tree
[class] To represent the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

storePatternsInFile(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsInDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

6.1. Uncertain Frequent Pattern mining 291

PAMI, Release 2024.04.23

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

frequentOneItem()
Extracts the one-length frequent patterns from database

Execution methods

Terminal command

Format:

(.venv) $ python3 uveclat.py <inputFile> <outputFile> <minSup>

Example Usage:

(.venv) $ python3 uveclat.py sampleDB.txt patterns.txt 3

Note: minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

from PAMI.uncertainFrequentPattern.basic import UVECLAT as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.UVEclat(iFile, minSup)

obj.mine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getmemoryUSS()

print("Total Memory in USS:", memUSS)

(continues on next page)

292 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

(continued from previous page)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

6.1. Uncertain Frequent Pattern mining 293

PAMI, Release 2024.04.23

mine()

Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns

printResults()

This function is used to print the results

save(oFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
oFile (csv file) – name of the output file

6.2 Uncertain Periodic Frequent Pattern mining

Uncertain periodic frequent pattern mining is a data mining task that involves the discovery of periodic patterns from
datasets containing uncertain or probabilistic data. Unlike traditional periodic frequent pattern mining, which deals
with deterministic data, uncertain periodic frequent pattern mining addresses the challenges posed by uncertainty in
the data, where each item or attribute may have associated probabilities or uncertainties.

Applications: Healthcare, Environmental Monitoring, Financial Forecasting.

Uncertain periodic frequent pattern mining is a data mining task that involves the discovery of periodic patterns from
datasets containing uncertain or probabilistic data. Unlike traditional periodic frequent pattern mining, which deals
with deterministic data, uncertain periodic frequent pattern mining addresses the challenges posed by uncertainty in
the data, where each item or attribute may have associated probabilities or uncertainties.

Applications: Healthcare, Environmental Monitoring, Financial Forecasting.

6.2.1 Basic

UPFPGrowth

class PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth(iFile, minSup, maxPer,
sep='\t')

Bases: _periodicFrequentPatterns

About this algorithm

Description
Basic is to discover periodic-frequent patterns in a uncertain temporal database.

Reference
Uday Kiran, R., Likhitha, P., Dao, MS., Zettsu, K., Zhang, J. (2021).Discovering Periodic-
Frequent Patterns in Uncertain Temporal Databases. In: Mantoro, T., Lee, M., Ayu, M.A., Wong,
K.W., Hidayanto, A.N. (eds) Neural Information Processing.

ICONIP 2021. Communications in Computer and Information Science, vol 1516.
Springer, Cham. https://doi.org/10.1007/978-3-030-92307-5_83

param iFile
str : Name of the Input file to mine complete set of Uncertain Periodic Frequent Patterns

294 Chapter 6. Uncertain Database

https://doi.org/10.1007/978-3-030-92307-5_83

PAMI, Release 2024.04.23

param oFile
str : Name of the output file to store complete set of Uncertain Periodic Frequent patterns

param minSup
float: minimum support thresholds were tuned to find the appropriate ranges in the limited mem-
ory

param sep
str : This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space. However, the users can override their default separator.

param maxper
float : where maxPer represents the maximum periodicity threshold value specified by the user.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of output file

minSup: int or float or str
The user can specify minSup either in count or proportion of database size. If the program
detects the data type of minSup is integer, then it treats minSup is expressed in count. Oth-
erwise, it will be treated as float. Example: minSup=10 will be treated as integer, while
minSup=10.0 will be treated as float

maxPer: int or float or str
The user can specify maxPer either in count or proportion of database size. If the program
detects the data type of maxPer is integer, then it treats maxPer is expressed in count. Oth-
erwise, it will be treated as float. Example: maxPer=10 will be treated as integer, while
maxPer=10.0 will be treated as float

sep: str
This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS: float
To store the total amount of USS memory consumed by the program

memoryRSS: float
To store the total amount of RSS memory consumed by the program

startTime: float
To record the start time of the mining process

endTime: float
To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

_lno
[int] To represent the total no of transaction

tree
[class] To represents the Tree class

6.2. Uncertain Periodic Frequent Pattern mining 295

PAMI, Release 2024.04.23

finalPatterns
[dict] To store the complete patterns

Methods

mine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets()
Scans the dataset and stores in a list format

PeriodicFrequentOneItem()
Extracts the one-periodic-frequent patterns from database

updateTransaction()
Update the database by removing aperiodic items and sort the Database by item decreased
support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

convert()
To convert the user specified value

removeFalsePositives()
To remove the false positives in generated patterns

Execution methods

Terminal command

Format:

(.venv) $ python3 basic.py <inputFile> <outputFile> <minSup> <maxPer>

Example Usage:

(.venv) $ python3 basic.py sampleTDB.txt patterns.txt 0.3 4

296 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

Note: minSup and maxPer will be considered in support count or frequency

Calling from a python program

from PAMI.uncertainPeriodicFrequentPattern.basic import UPFPGrowth as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

maxPer = 2 # can also be specified between 0 and 1

obj = alg.UPFPGrowth(iFile, minSup, maxPer)

obj.mine()

periodicFrequentPatterns = obj.getPatterns()

print("Total number of Periodic Frequent Patterns:", len(periodicFrequentPatterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()→ float
Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()→ float
Total amount of USS memory consumed by the mining process will be retrieved from this function

6.2. Uncertain Periodic Frequent Pattern mining 297

PAMI, Release 2024.04.23

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()→ Dict[str, List[float]]
Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()→ DataFrame
Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()→ float
Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()→ None
Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns.

Returns
None

printResults()→ None
This function is used to print the results

save(outFile: str)→ None
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

Returns
None

startMine()→ None
Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns.

Returns
None

298 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

UPFPGrowthPlus

class PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus(iFile,
minSup,
maxPer,
sep='\t')

Bases: _periodicFrequentPatterns

About this algorithm

Description
Basic Plus is to discover periodic-frequent patterns in a uncertain temporal database.

Reference
Palla Likhitha, Rage Veena,Rage Uday Kiran, Koji Zettsu, Masashi Toyoda, Philippe Fournier-
Viger, (2023). UPFP-growth++: An Efficient Algorithm to Find Periodic-Frequent Patterns in
Uncertain Temporal Databases. ICONIP 2022. Communications in Computer and Information
Science, vol 1792. Springer, Singapore. https://doi.org/10.1007/978-981-99-1642-9_16

param iFile
str : Name of the Input file to mine complete set of Uncertain Periodic Frequent Patterns

param oFile
str : Name of the output file to store complete set of Uncertain Periodic Frequent patterns

param minSup
str: minimum support thresholds were tuned to find the appropriate ranges in the limited memory

param sep
str : This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space. However, the users can override their default separator.

param maxper
floot : where maxPer represents the maximum periodicity threshold value specified by the user.

Attributes

iFile: file
Name of the Input file or path of input file

oFile: file
Name of the output file or path of output file

minSup: int or float or str
The user can specify minSup either in count or proportion of database size. If the program
detects the data type of minSup is integer, then it treats minSup is expressed in count. Oth-
erwise, it will be treated as float. Example: minSup=10 will be treated as integer, while
minSup=10.0 will be treated as float

maxPer: int or float or str
The user can specify maxPer either in count or proportion of database size. If the program
detects the data type of maxPer is integer, then it treats maxPer is expressed in count. Oth-
erwise, it will be treated as float. Example: maxPer=10 will be treated as integer, while
maxPer=10.0 will be treated as float

sep: str
This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

6.2. Uncertain Periodic Frequent Pattern mining 299

https://doi.org/10.1007/978-981-99-1642-9_16

PAMI, Release 2024.04.23

memoryUSS: float
To store the total amount of USS memory consumed by the program

memoryRSS: float
To store the total amount of RSS memory consumed by the program

startTime: float
To record the start time of the mining process

endTime: float
To record the completion time of the mining process

Database: list
To store the transactions of a database in list

mapSupport: Dictionary
To maintain the information of item and their frequency

lno: int
To represent the total no of transaction

tree: class
To represents the Tree class

itemSetCount: int
To represents the total no of patterns

finalPatterns: dict
To store the complete patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

savePatterns(oFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

updateDatabases()
Update the database by removing aperiodic items and sort the Database by item decreased
support

300 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

convert()
to convert the user specified value

PeriodicFrequentOneItems()
To extract the one-length periodic-frequent items

Execution methods

Terminal command

Format:

(.venv) $ python3 UPFPGrowthPlus.py <inputFile> <outputFile> <minSup> <maxPer>

Examples Usage:

(.venv) $ python3 UPFPGrowthPlus.py sampleTDB.txt patterns.txt 0.3 4

Note: minSup and maxPer will be considered in support count or frequency

Calling from a python program

from PAMI.uncertainPeriodicFrequentPattern import UPFPGrowthPlus as alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

maxPer = 2 # can also be specified between 0 and 1

obj = alg.UPFPGrowthPlus(iFile, minSup, maxPer)

obj.mine()

periodicFrequentPatterns = obj.getPatterns()

print("Total number of uncertain Periodic Frequent Patterns:",␣
→˓len(periodicFrequentPatterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()
(continues on next page)

6.2. Uncertain Periodic Frequent Pattern mining 301

PAMI, Release 2024.04.23

(continued from previous page)

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function.

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

302 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

mine()

Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns

printResults()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

startMine()

Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns

PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.printTree(root)
To print the tree with nodes with item name, probability, timestamps, and second probability respectively.

Parameters
root – Node

Returns
print all Tree with nodes with items, probability, parent item, timestamps, second probability
respectively.

6.3 Uncertain Geo-Referenced Frequent Pattern mining

Uncertain geo-referenced frequent pattern mining is a data mining task that involves the discovery of frequent patterns
from datasets containing uncertain or probabilistic data with geographic references. In uncertain geo-referenced data,
each item or attribute is associated with a geographical location, and uncertainty arises from the probabilistic nature of
the data, where the occurrence of events or patterns may vary with associated probabilities or uncertainties.

Applications: Location-based Services, Urban Planning and Development, Emergency Response and Disaster Man-
agement.

Uncertain geo-referenced frequent pattern mining is a data mining task that involves the discovery of frequent patterns
from datasets containing uncertain or probabilistic data with geographic references. In uncertain geo-referenced data,
each item or attribute is associated with a geographical location, and uncertainty arises from the probabilistic nature of
the data, where the occurrence of events or patterns may vary with associated probabilities or uncertainties.

Applications: Location-based Services, Urban Planning and Development, Emergency Response and Disaster Man-
agement.

6.3.1 Basic

GFPGrowth

class PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth(iFile, nFile,
minSup, sep='\t')

Bases: _frequentPatterns

6.3. Uncertain Geo-Referenced Frequent Pattern mining 303

PAMI, Release 2024.04.23

About this algorithm

Description
GFPGrowth algorithm is used to discover geo-referenced frequent patterns in a uncertain trans-
actional database using GFP-Tree.

Reference
Palla Likhitha,Pamalla Veena, Rage, Uday Kiran, Koji Zettsu (2023). “Discovering Geo-
referenced Frequent Patterns in Uncertain Geo-referenced Transactional Databases”. PAKDD
2023. https://doi.org/10.1007/978-3-031-33380-4_3

param iFile
str : Name of the Input file to mine complete set of uncertain Geo referenced Frequent Patterns

param oFile
str : Name of the output file to store complete set of Uncertain Geo referenced frequent patterns

param minSup
str: minimum support thresholds were tuned to find the appropriate ranges in the limited memory

param sep
str : This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup: float or int or str
The user can specify minSup either in count or proportion of database size. If the program
detects the data type of minSup is integer, then it treats minSup is expressed in count. Oth-
erwise, it will be treated as float. Example: minSup=10 will be treated as integer, while
minSup=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] To represent the total no of transaction

304 Chapter 6. Uncertain Database

https://doi.org/10.1007/978-3-031-33380-4_3

PAMI, Release 2024.04.23

tree
[class] To represents the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

savePatterns(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

frequentOneItem()
Extracts the one-length frequent patterns from database

updateTransactions()
Update the transactions by removing non-frequent items and sort the Database by item de-
creased support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

convert()
to convert the user specified value

startMine()
Mining process will start from this function

6.3. Uncertain Geo-Referenced Frequent Pattern mining 305

PAMI, Release 2024.04.23

Execution methods

Terminal command

Format:

(.venv) $ python3 GFPGrowth.py <inputFile> <neighborFile> <outputFile> <minSup>

Examples usage:

(.venv) $ python3 GFPGrowth.py sampleTDB.txt sampleNeighbor.txt patterns.txt 3

Note: minSup will be considered in support count or frequency

Calling from a python program:

from PAMI.uncertainGeoreferencedFrequentPattern.basic import GFPGrowth as␣
→˓alg

iFile = 'sampleDB.txt'

minSup = 10 # can also be specified between 0 and 1

obj = alg.GFPGrowth(iFile, nFile, minSup)

obj.mine()

Patterns = obj.getPatterns()

print("Total number of Patterns:", len(Patterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

306 Chapter 6. Uncertain Database

PAMI, Release 2024.04.23

Credits

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

mine()

Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns

printResults()

This function is used to print the result

save(outFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

6.3. Uncertain Geo-Referenced Frequent Pattern mining 307

PAMI, Release 2024.04.23

startMine()

Main method where the patterns are mined by constructing tree and remove the false patterns by counting
the original support of a patterns

308 Chapter 6. Uncertain Database

CHAPTER

SEVEN

SEQUENTIAL DATABASE

A sequence represents a collection of itemsets (or transactions) in a particular order. A sequence database
is a collection of sequences and their sequence identifiers. An example of a geo-referenced transactional
database is as follows:

Rules to create a sequence database:

• Items in an itemset have to be seperated by a tab space.

• Itemsets in a sequence are seperated using ‘-1’ as a seperator.

• Each sequence is represented as a line

• The sequence identifier, sid, is not needed to create a sequence database.

Format of a sequence:

>>> item1<sep>item2<sep>...<sep>itemA : item1<sep>item2<sep>...<sep>itemB : item1<sep>
→˓item2<sep>...<sep>itemC

Example:

>>> a b c d : a d e : a e f
a b c : b d e : c d e
a e f : c
a e f : a c d : c e

7.1 Sequential Frequent Pattern mining

Sequential frequent pattern mining is a data mining technique focused on identifying patterns or subsequences of
events that frequently occur together in ordered sequences of data. It involves analyzing datasets where data instances
are presented sequentially over time, such as transaction sequences, web clickstreams, biological sequences, or event
logs.

Applications: Marketing and User Retention, Process Optimization, Healthcare Monitoring.

Sequential frequent pattern mining is a data mining technique focused on identifying patterns or subsequences of
events that frequently occur together in ordered sequences of data. It involves analyzing datasets where data instances
are presented sequentially over time, such as transaction sequences, web clickstreams, biological sequences, or event
logs.

Applications: Marketing and User Retention, Process Optimization, Healthcare Monitoring.

309

PAMI, Release 2024.04.23

7.1.1 Basic

SPADE

class PAMI.sequentialPatternMining.basic.SPADE.SPADE(iFile, minSup, sep='\t')
Bases: _sequentialPatterns

Description

• SPADE is one of the fundamental algorithm to discover sequential frequent patterns in a
transactional database.

• This program employs SPADE property (or downward closure property) to reduce the search
space effectively.

• This algorithm employs breadth-first search technique when 1-2 length patterns and depth-
first serch when above 3 length patterns to find the complete set of frequent patterns in a
transactional database.

Reference
Mohammed J. Zaki. 2001. SPADE: An Efficient Algorithm for Mining Frequent Se-
quences. Mach. Learn. 42, 1-2 (January 2001), 31-60. DOI=10.1023/A:1007652502315
http://dx.doi.org/10.1023/A:1007652502315

Parameters

• iFile – str : Name of the Input file to mine complete set of Sequential frequent patterns

• oFile – str : Name of the output file to store complete set of Sequential frequent patterns

• minSup – float or int or str : minSup measure constraints the minimum number of trans-
actions in a database where a pattern must appear Example: minSup=10 will be treated as
integer, while minSup=10.0 will be treated as float

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[str] Input file name or path of the input file

oFile
[str] Name of the output file or the path of output file

minSup: float or int or str
The user can specify minSup either in count or proportion of database size. If the program
detects the data type of minSup is integer, then it treats minSup is expressed in count. Oth-
erwise, it will be treated as float. Example: minSup=10 will be treated as integer, while
minSup=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

310 Chapter 7. Sequential Database

PAMI, Release 2024.04.23

finalPatterns: dict
Storing the complete set of patterns in a dictionary variable

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the transactions of a database in list

_xLenDatabase: dict
To store the datas in different sequence separated by sequence, rownumber, length.

_xLenDatabaseSame
[dict] To store the datas in same sequence separated by sequence, rownumber, length.

Methods

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

savePatterns(oFile)
Complete set of frequent patterns will be loaded in to an output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

candidateToFrequent(candidateList)
Generates frequent patterns from the candidate patterns

frequentToCandidate(frequentList, length)
Generates candidate patterns from the frequent patterns

Methods to execute code on terminal

Format:

(.venv) $ python3 SPADE.py <inputFile> <outputFile> <minSup>

Example usage:

(.venv) $ python3 SPADE.py sampleDB.txt patterns.txt 10.0

(continues on next page)

7.1. Sequential Frequent Pattern mining 311

PAMI, Release 2024.04.23

(continued from previous page)

.. note:: minSup will be considered in times of minSup and count of␣
→˓database transactions

Importing this algorithm into a python program

import PAMI.sequentialPatternMining.basic.SPADE as alg

obj = alg.SPADE(iFile, minSup)

obj.startMine()

sequentialPatternMining = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by Suzuki Shota under the supervision of Professor Rage Uday
Kiran.

Mine()

Frequent pattern mining process will start from here

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

312 Chapter 7. Sequential Database

PAMI, Release 2024.04.23

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

make1LenDatabase()

To make 1 length frequent patterns by breadth-first search technique and update Database to sequential
database

make2LenDatabase()

To make 2 length frequent patterns by joining two one length patterns by breadth-first search technique and
update xlen Database to sequential database

make3LenDatabase()

To call each 2 length patterns to make 3 length frequent patterns depth-first search technique

makeNextRow(bs, latestWord, latestWord2)
To make pattern row when two patterns have the latest word in different sequence

:param bs : previous pattern without the latest one :param latestWord : latest word of one previous pattern
:param latestWord2 : latest word of other previous pattern

makeNextRowSame(bs, latestWord, latestWord2)
To make pattern row when one pattern have the latestWord1 in different sequence and other(latestWord2)
in same

:param bs : previous pattern without the latest one :param latestWord : latest word of one previous pattern
in same sequence :param latestWord2 : latest word of other previous pattern in different sequence

makeNextRowSame2(bs, latestWord, latestWord2)
To make pattern row when two patterns have the latest word in same sequence

:param bs : previous pattern without the latest one :param latestWord : latest word of one previous pattern
:param latestWord2 : latest word of the other previous pattern

7.1. Sequential Frequent Pattern mining 313

PAMI, Release 2024.04.23

makeNextRowSame3(bs, latestWord, latestWord2)
To make pattern row when two patterns have the latest word in different sequence and both latest word is
in same sequence

:param bs : previous pattern without the latest one :param latestWord : latest word of one previous pattern
:param latestWord2 : latest word of other previous pattern

makexLenDatabase(rowLen, bs, latestWord)
To make “rowLen” length frequent patterns from pattern which the latest word is in same seq by joining
“rowLen”-1 length patterns by depth-first search technique and update xlenDatabase to sequential database

Parameters
rowLen – row length of patterns.

:param bs : patterns without the latest one :param latestWord : latest word of patterns

makexLenDatabaseSame(rowLen, bs, latestWord)
To make 3 or more length frequent patterns from pattern which the latest word is in different seq by depth-
first search technique and update xlenDatabase to sequential database

Parameters
rowLen – row length of previous patterns.

:param bs : previous patterns without the latest one :param latestWord : latest word of previous patterns

printResults()

This function is used to prnt the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

startMine()

Frequent pattern mining process will start from here

SPAM

class PAMI.sequentialPatternMining.basic.SPAM.SPAM(iFile, minSup, sep='\t')
Bases: _sequentialPatterns

Description
SPAM is one of the fundamental algorithm to discover sequential frequent patterns in a trans-
actional database. This program employs SPAM property (or downward closure property) to
reduce the search space effectively. This algorithm employs breadth-first search technique to find
the complete set of frequent patterns in a sequential database.

Reference

J. Ayres, J. Gehrke, T.Yiu, and J. Flannick. Sequential Pattern Mining Using Bitmaps. In Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. Edmonton, Alberta, Canada, July 2002.

Parameters

• iFile – str : Name of the Input file to mine complete set of Sequential frequent patterns

• oFile – str : Name of the output file to store complete set of Sequential frequent patterns

314 Chapter 7. Sequential Database

PAMI, Release 2024.04.23

• minSup – float or int or str : minSup measure constraints the minimum number of trans-
actions in a database where a pattern must appear Example: minSup=10 will be treated as
integer, while minSup=10.0 will be treated as float

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[str] Input file name or path of the input file

oFile
[str] Name of the output file or the path of output file

minSup
[float or int or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

finalPatterns
[dict] Storing the complete set of patterns in a dictionary variable

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the sequences of a database in list

_idDatabase
[dict] To store the sequences of a database by bit map

_maxSeqLen:
the maximum length of subsequence in sequence.

Methods

_creatingItemSets():
Storing the complete sequences of the database/input file in a database variable

_convert(value):
To convert the user specified minSup value

make2BitDatabase():
To make 1 length frequent patterns by breadth-first search technique and update Database to
sequential database

DfsPruning(items,sStep,iStep):
the main algorithm of spam. This can search sstep and istep items and find next patterns, its

7.1. Sequential Frequent Pattern mining 315

PAMI, Release 2024.04.23

sstep, and its istep. And call this function again by using them. Recursion until there are no
more items available for exploration.

Sstep(s):
To convert bit to ssteo bit.The first time you get 1, you set it to 0 and subsequent ones to
1.(like 010101=>001111, 00001001=>00000111)

startMine()
Mining process will start from here

getPatterns()
Complete set of patterns will be retrieved with this function

savePatterns(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

candidateToFrequent(candidateList)
Generates frequent patterns from the candidate patterns

frequentToCandidate(frequentList, length)
Generates candidate patterns from the frequent patterns

Executing the code on terminal:

Format:

(.venv) $ python3 SPAM.py <inputFile> <outputFile> <minSup> (<separator>)

Examples usage:

(.venv) $ python3 SPAM.py sampleDB.txt patterns.txt 10.0

.. note:: minSup will be considered in times of minSup and count of␣
→˓database transactions

316 Chapter 7. Sequential Database

PAMI, Release 2024.04.23

Sample run of the importing code:

import PAMI.sequentialPatternMining.basic.SPAM as alg

obj = alg.SPAM(iFile, minSup)

obj.startMine()

sequentialPatternMining = obj.getPatterns()

print(“Total number of Frequent Patterns:”, len(frequentPatterns))

obj.savePatterns(oFile)

Df = obj.getPatternInDataFrame()

memUSS = obj.getMemoryUSS()

print(“Total Memory in USS:”, memUSS)

memRSS = obj.getMemoryRSS()

print(“Total Memory in RSS”, memRSS)

run = obj.getRuntime()

print(“Total ExecutionTime in seconds:”, run)

Credits:

The complete program was written by Shota Suzuki under the supervision of Professor Rage Uday
Kiran.

DfsPruning(items, sStep, iStep)
the main algorithm of spam. This can search sstep and istep items and find next patterns, its sstep, and its
istep. And call this function again by using them. Recursion until there are no more items available for
exploration.

Attributes

items
[str] The pattrens I got before

sStep
[list] Items presumed to have “sstep” relationship with “items”.(sstep is What appears later like a-b
and a-c)

iStep
[list] Items presumed to have “istep” relationship with “items”(istep is What appears in same time like
ab and ac)

Sstep(s)
To convert bit to Sstep bit.The first time you get 1, you set it to 0 and subsequent ones to 1.(like
010101=>001111, 00001001=>00000111)

:param s:list
to store each bit sequence

Returns
nextS:list to store the bit sequence converted by sstep

7.1. Sequential Frequent Pattern mining 317

PAMI, Release 2024.04.23

countSup(n)
count support

:param n:list
to store each bit sequence

Returns
count: int support of this list

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function :return:
returning RSS memory consumed by the mining process :rtype: float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function :return:
returning USS memory consumed by the mining process :rtype: float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process :return: returning
frequent patterns :rtype: dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe :return: returning frequent patterns in a dataframe :rtype:
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process :return: returning total amount of
runtime taken by the mining process :rtype: float

make2BitDatabase()

To make 1 length frequent patterns by breadth-first search technique and update Database to sequential
database

printResults()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file :param outFile: name of the output file
:type outFile: file

startMine()

Frequent pattern mining process will start from here

prefixSpan

class PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan(iFile, minSup, sep='\t')
Bases: _sequentialPatterns

Description

• Prefix Span is one of the fundamental algorithm to discover sequential frequent patterns in
a transactional database.

• This program employs Prefix Span property (or downward closure property) to reduce the
search space effectively.

318 Chapter 7. Sequential Database

PAMI, Release 2024.04.23

• This algorithm employs depth-first search technique to find the complete set of frequent pat-
terns in a transactional database.

Reference

J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, M. Hsu: Mining Se-
quential Patterns by Pattern-Growth: The PrefixSpan Approach. IEEE Trans. Knowl. Data
Eng. 16(11): 1424-1440 (2004)

Parameters

• iFile – str : Name of the Input file to mine complete set of Sequential frequent patterns

• oFile – str : Name of the output file to store complete set of Sequential frequent patterns

• minSup – float or int or str : minSup measure constraints the minimum number of trans-
actions in a database where a pattern must appear Example: minSup=10 will be treated as
integer, while minSup=10.0 will be treated as float

• sep – str : This variable is used to distinguish items from one another in a transaction. The
default seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[str] Input file name or path of the input file

oFile
[str] Name of the output file or the path of output file

minSup
[float or int or str] The user can specify minSup either in count or proportion of database size.
If the program detects the data type of minSup is integer, then it treats minSup is expressed in
count. Otherwise, it will be treated as float. Example: minSup=10 will be treated as integer,
while minSup=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

startTime
[float] To record the start time of the mining process

endTime
[float] To record the completion time of the mining process

finalPatterns
[dict] Storing the complete set of patterns in a dictionary variable

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

Database
[list] To store the transactions of a database in list

Methods

startMine()
Mining process will start from here

7.1. Sequential Frequent Pattern mining 319

PAMI, Release 2024.04.23

getPatterns()
Complete set of patterns will be retrieved with this function

savePatterns(oFile)
Complete set of frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

candidateToFrequent(candidateList)
Generates frequent patterns from the candidate patterns

frequentToCandidate(frequentList, length)
Generates candidate patterns from the frequent patterns

Methods to execute code on terminal

Format:

(.venv) $ python3 prefixSpan.py <inputFile> <outputFile> <minSup>

Example usage:

(.venv) $ python3 prefixSpan.py sampleDB.txt patterns.txt 10

.. note:: minSup will be considered in support count or frequency

Importing this algorithm into a python program

import PAMI.frequentPattern.basic.prefixSpan as alg

obj = alg.prefixSpan(iFile, minSup)

obj.startMine()

frequentPatterns = obj.getPatterns()

print("Total number of Frequent Patterns:", len(frequentPatterns))

obj.save(oFile)

Df = obj.getPatternInDataFrame()
(continues on next page)

320 Chapter 7. Sequential Database

PAMI, Release 2024.04.23

(continued from previous page)

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

run = obj.getRuntime()

print("Total ExecutionTime in seconds:", run)

Credits:

The complete program was written by Suzuki Shota under the supervision of Professor Rage Uday
Kiran.

Mine()

Frequent pattern mining process will start from here

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of frequent patterns after completion of the mining process

Returns
returning frequent patterns

Return type
dict

getPatternsAsDataFrame()

Storing final frequent patterns in a dataframe

Returns
returning frequent patterns in a dataframe

Return type
pd.DataFrame

7.1. Sequential Frequent Pattern mining 321

PAMI, Release 2024.04.23

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

getSameSeq(startrow)

To get words in the latest sequence

Parameters
startrow – the patterns get before

makeNext(sepDatabase, startrow)
To get next pattern by adding head word to next sequence of startrow

Parameters

• sepDatabase – dict what words and rows startrow have to add it.

• startrow – the patterns get before

makeNextSame(sepDatabase, startrow)

To get next pattern by adding head word to the latest sequence of startrow

Parameters

• sepDatabase – dict what words and rows startrow have to add it

• startrow – the patterns get before

makeSeqDatabaseFirst(database)
To make 1 length sequence dataset list which start from same word. It was stored only 1 from 1 line.

Parameters
database – To store the transactions of a database in list

makeSeqDatabaseSame(database, startrow)
To make sequence dataset list which start from same word(head). It was stored only 1 from 1 line. And it
separated by having head in the latest sequence of startrow or not.

Parameters

• database – To store the transactions of a database in list

• startrow – the patterns get before

makeSupDatabase(database, head)
To delete not frequent words without words in the latest sequence

Parameters
database – list database of lines having same startrow and head word

:param head:list
words in the latest sequence

322 Chapter 7. Sequential Database

PAMI, Release 2024.04.23

Returns
changed database

printResults()

This function is used to print the results

save(outFile)
Complete set of frequent patterns will be loaded in to an output file

Parameters
outFile (csv file) – name of the output file

serchSame(database, startrow, give)
To get 2 or more length patterns in same sequence.

Parameters

• database – list To store the transactions of a database in list which have same startrow
and head word

• startrow – list the patterns get before

• give – list the word in the latest sequence of startrow

startMine()

Frequent pattern mining process will start from here

7.1.2 closed

bide

7.2 Geo-referenced Frequent Sequence Pattern mining

Geo-referenced frequent sequential pattern mining is a data mining technique focused on discovering patterns or se-
quences of events that frequently occur in geo-referenced time series data while preserving the spatial and temporal
ordering information. It involves analyzing datasets where data instances are geo-referenced.

Applications: Transportation, Environmental Monitoring, Urban Planning or Geographical Phenomena.

Geo-referenced frequent sequential pattern mining is a data mining technique focused on discovering patterns or se-
quences of events that frequently occur in geo-referenced time series data while preserving the spatial and temporal
ordering information. It involves analyzing datasets where data instances are geo-referenced.

Applications: Transportation, Environmental Monitoring, Urban Planning or Geographical Phenomena.

7.2. Geo-referenced Frequent Sequence Pattern mining 323

PAMI, Release 2024.04.23

324 Chapter 7. Sequential Database

CHAPTER

EIGHT

MULTIPLE TIMESERIES

A timeseries represents an ordered collection of values of an event (or item) over time. A multiple time-
series represents the collection of multiple timeseries gathered from multiple items over a particular dura-
tion. Depending on the values stored in a series, a multiple timeseries can be broadly classified into two
types:

• Binary multiple timeseries and

• (non-binary) multiple timeseries .

Binary Multiple Timeseries

A binary multiple time series represents the binary data of multiple items split into temporal
windows. An example of this series is shown below.

windowID binary sequences
1 (a,1) (a,3) (b,2) (b,3) (c,2) (c,3)
2 (a,1) (b,1) (b,2) (b,3) (c,1)
3 (a,1) (a,2) (b,1) (b,3) (c,2)
4 (a,1) (b,1) (b,2) (c,3)
5 (a,1) (a,3) (b,3) (c,2) (c,2)
6 (a,1) (a,2) (b,2) (b,3)

Rules to create a binary multiple time series.

• First column must contain an integer representing an windowID.

• Remaining columns must contain items and their timestamps within braces.

• In the braces, starting from left hand side, the first word/letter represents an item and the other
word/letter represents an timestamp.

• Columns are seperated with a seperator.

• ‘ Tab space ’ is the default seperator. However, transactional databases can be constructed using other
seperators, such as comma and space.

Format of a binary multiple time series:

>>> windowID<sep>(item,timestamp)<sep>(item,timestamp)<sep>...<sep>(item,␣
→˓timestamp)

An example

325

PAMI, Release 2024.04.23

1 (a,1) (a,3) (b,2) (b,3) (c,2) (c,3)
2 (a,1) (b,1) (b,2) (b,3) (c,1)
3 (a,1) (a,2) (b,1) (b,3) (c,2)
4 (a,1) (b,1) (b,2) (c,3)
5 (a,1) (a,3) (b,3) (c,2) (c,2)
6 (a,1) (a,2) (b,2) (b,3)

8.1 Multiple Partial Periodic Pattern Mining

Multiple partial periodic pattern mining is a data mining technique focused on identifying recurring patterns or se-
quences of events that occur periodically but may not cover the entire duration of the periodic cycle. It involves analyz-
ing datasets where multiple partial periodic patterns exist, with each pattern representing a subset of events recurring
at regular intervals.

Applications: Stock Market Analysis, Healthcare Monitoring, Internet Traffic Analysis.

Multiple partial periodic pattern mining is a data mining technique focused on identifying recurring patterns or se-
quences of events that occur periodically but may not cover the entire duration of the periodic cycle. It involves analyz-
ing datasets where multiple partial periodic patterns exist, with each pattern representing a subset of events recurring
at regular intervals.

Applications: Stock Market Analysis, Healthcare Monitoring, Internet Traffic Analysis.

8.1.1 Basic

PPGrowth

class PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth(iFile, periodicSupport,
period, sep='\t')

Bases: _partialPeriodicPatterns

About this algorithm

Description
PPGrowth is one of the fundamental algorithm to discover periodic-frequent patterns in a trans-
actional database.

Reference
C. Saideep, R. Uday Kiran, K. Zettsu, P. Fournier-Viger, M. Kitsuregawa and P. Krishna Reddy,
“Discovering Periodic Patterns in Irregular Time Series,” 2019 International Conference on Data
Mining Workshops (ICDMW), 2019,

pp. 1020-1028, doi: 10.1109/ICDMW.2019.00147.

param iFile
str : Name of the Input file to mine complete set of periodic frequent pattern’s

param oFile
str : Name of the output file to store complete set of periodic frequent pattern’s

326 Chapter 8. Multiple Timeseries

PAMI, Release 2024.04.23

param sep
str : This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space. However, the users can override their default separator.

Attributes

iFile
[file] Name of the Input file or path of the input file

oFile
[file] Name of the output file or path of the output file

minSup: int or float or str
The user can specify minSup either in count or proportion of database size. If the program
detects the data type of minSup is integer, then it treats minSup is expressed in count. Oth-
erwise, it will be treated as float. Example: minSup=10 will be treated as integer, while
minSup=10.0 will be treated as float

maxPer: int or float or str
The user can specify maxPer either in count or proportion of database size. If the program
detects the data type of maxPer is integer, then it treats maxPer is expressed in count. Oth-
erwise, it will be treated as float. Example: maxPer=10 will be treated as integer, while
maxPer=10.0 will be treated as float

sep
[str] This variable is used to distinguish items from one another in a transaction. The default
seperator is tab space or . However, the users can override their default separator.

memoryUSS
[float] To store the total amount of USS memory consumed by the program

memoryRSS
[float] To store the total amount of RSS memory consumed by the program

startTime:float
To record the start time of the mining process

endTime:float
To record the completion time of the mining process

Database
[list] To store the transactions of a database in list

mapSupport
[Dictionary] To maintain the information of item and their frequency

lno
[int] To represent the total no of transaction

tree
[class] To represents the Tree class

itemSetCount
[int] To represents the total no of patterns

finalPatterns
[dict] To store the complete patterns

Methods

startMine()
Mining process will start from here

8.1. Multiple Partial Periodic Pattern Mining 327

PAMI, Release 2024.04.23

getPatterns()
Complete set of patterns will be retrieved with this function

save(oFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

getPatternsAsDataFrame()
Complete set of periodic-frequent patterns will be loaded in to a dataframe

getMemoryUSS()
Total amount of USS memory consumed by the mining process will be retrieved from this
function

getMemoryRSS()
Total amount of RSS memory consumed by the mining process will be retrieved from this
function

getRuntime()
Total amount of runtime taken by the mining process will be retrieved from this function

creatingItemSets(fileName)
Scans the dataset and stores in a list format

PeriodicFrequentOneItem()
Extracts the one-periodic-frequent patterns from database

updateDatabases()
Update the database by removing aperiodic items and sort the Database by item decreased
support

buildTree()
After updating the Database, remaining items will be added into the tree by setting root node
as null

convert()
to convert the user specified value

Execution methods

Terminal command

Format:

(.venv) $ python3 PPGrowth.py <inputFile> <outputFile> <minSup> <maxPer>

Examples:

(.venv) $ python3 PPGrowth.py sampleTDB.txt patterns.txt 0.3 0.4

328 Chapter 8. Multiple Timeseries

PAMI, Release 2024.04.23

Sample run of importing the code:

from PAMI.periodicFrequentPattern.basic import PPGrowth as alg

obj = alg.PPGrowth(iFile, minSup, maxPer)

obj.startMine()

periodicFrequentPatterns = obj.getPatterns()

print(“Total number of Periodic Frequent Patterns:”, len(periodicFrequentPatterns))

obj.save(oFile)

Df = obj.getPatternsAsDataFrame()

memUSS = obj.getMemoryUSS()

print(“Total Memory in USS:”, memUSS)

memRSS = obj.getMemoryRSS()

print(“Total Memory in RSS”, memRSS)

run = obj.getRuntime()

print(“Total ExecutionTime in seconds:”, run)

Credits:

The complete program was written by P.Likhitha under the supervision of Professor Rage Uday Kiran.

Mine()

Mining process will start from this function

getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

Returns
returning RSS memory consumed by the mining process

Return type
float

getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

Returns
returning USS memory consumed by the mining process

Return type
float

getPatterns()

Function to send the set of periodic-frequent patterns after completion of the mining process

Returns
returning periodic-frequent patterns

Return type
dict

8.1. Multiple Partial Periodic Pattern Mining 329

PAMI, Release 2024.04.23

getPatternsAsDataFrame()

Storing final periodic-frequent patterns in a dataframe

Returns
returning periodic-frequent patterns in a dataframe

Return type
pd.DataFrame

getRuntime()

Calculating the total amount of runtime taken by the mining process

Returns
returning total amount of runtime taken by the mining process

Return type
float

printResults()

This function is used to print the results

save(outFile)
Complete set of periodic-frequent patterns will be loaded in to a output file

Parameters
outFile (file) – name of the output file

startMine()

Mining process will start from this function

330 Chapter 8. Multiple Timeseries

CHAPTER

NINE

CONTIGUOUS PATTERNS

Contiguous Pattern Mining Definition here

9.1 Contiguous Frequent Patterns

Contiguous Frequent Patterns

Contiguous Frequent Patterns Def Here

331

PAMI, Release 2024.04.23

332 Chapter 9. Contiguous Patterns

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

333

PAMI, Release 2024.04.23

334 Chapter 10. Indices and tables

PYTHON MODULE INDEX

p
PAMI.correlatedPattern.basic.CoMine, 37
PAMI.correlatedPattern.basic.CoMinePlus, 40
PAMI.coveragePattern.basic.CMine, 50
PAMI.coveragePattern.basic.CPPG, 54
PAMI.faultTolerantFrequentPattern.basic.FTApriori,

43
PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth,

46
PAMI.frequentPattern.basic.Apriori, 2
PAMI.frequentPattern.basic.ECLAT, 5
PAMI.frequentPattern.basic.ECLATbitset, 10
PAMI.frequentPattern.basic.ECLATDiffset, 8
PAMI.frequentPattern.basic.FPGrowth, 13
PAMI.frequentPattern.closed.CHARM, 16
PAMI.frequentPattern.maximal.MaxFPGrowth, 19
PAMI.frequentPattern.topk.FAE, 22
PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth,

247
PAMI.fuzzyFrequentPattern.basic.FFIMiner, 243
PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner,

251
PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner,

260
PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner,

256
PAMI.georeferencedPartialPeriodicPattern.basic.STEclat,

175
PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner,

171
PAMI.highUtilityFrequentPattern.basic.HUFIM,

188
PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM,

192
PAMI.highUtilitySpatialPattern.basic.HDSHUIM,

197
PAMI.highUtilitySpatialPattern.basic.SHUIM,

201
PAMI.highUtilitySpatialPattern.topk.TKSHUIM,

205
PAMI.localPeriodicPattern.basic.LPPGrowth, 96
PAMI.localPeriodicPattern.basic.LPPMBreadth,

102
PAMI.localPeriodicPattern.basic.LPPMDepth,

105
PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth,

30
PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus,

33
PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth,

110
PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS,

116
PAMI.partialPeriodicPattern.basic.GThreePGrowth,

128
PAMI.partialPeriodicPattern.basic.PPP_ECLAT,

124
PAMI.partialPeriodicPattern.basic.PPPGrowth,

120
PAMI.partialPeriodicPattern.closed.PPPClose,

131
PAMI.partialPeriodicPattern.maximal.Max3PGrowth,

135
PAMI.partialPeriodicPattern.topk.k3PMiner,

139
PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth,

326
PAMI.periodicCorrelatedPattern.basic.EPCPGrowth,

143
PAMI.periodicFrequentPattern.closed.CPFPMiner,

81
PAMI.periodicFrequentPattern.maximal.MaxPFGrowth,

84
PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner,

88
PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP,

92
PAMI.recurringPattern.basic.RPGrowth, 160
PAMI.relativeFrequentPattern.basic.RSFPGrowth,

25
PAMI.relativeHighUtilityPattern.basic.RHUIM,

183
PAMI.sequentialPatternMining.basic.prefixSpan,

318

335

PAMI, Release 2024.04.23

PAMI.sequentialPatternMining.basic.SPADE, 310
PAMI.sequentialPatternMining.basic.SPAM, 314
PAMI.sequentialPatternMining.closed.bide, 323
PAMI.stablePeriodicFrequentPattern.topK.TSPIN,

156
PAMI.uncertainFrequentPattern.basic.CUFPTree,

267
PAMI.uncertainFrequentPattern.basic.PUFGrowth,

271
PAMI.uncertainFrequentPattern.basic.TubeP,

279
PAMI.uncertainFrequentPattern.basic.TubeS,

283
PAMI.uncertainFrequentPattern.basic.TUFP, 275
PAMI.uncertainFrequentPattern.basic.UFGrowth,

287
PAMI.uncertainFrequentPattern.basic.UVECLAT,

290
PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth,

303
PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth,

294
PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus,

299
PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth,

235
PAMI.weightedFrequentPattern.basic.WFIM, 226
PAMI.weightedFrequentRegularPattern.basic.WFRIMiner,

231

336 Python Module Index

INDEX

A
addChild() (PAMI.periodicFrequentPattern.basic.PSGrowth.Node

method), 68
additemset() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

method), 209
addTransaction() (PAMI.localPeriodicPattern.basic.LPPGrowth.Tree

method), 101
addTransaction() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.Tree

method), 114
Apriori (class in PAMI.frequentPattern.basic.Apriori), 2

B
backtrackingEFIM() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

method), 209

C
calculateIP (class in

PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth),
115

calculateNeighbourIntersection()
(PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
method), 209

candidateCount (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
attribute), 210

CFPGrowth (class in PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth),
30

CFPGrowthPlus (class in
PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus),
33

CHARM (class in PAMI.frequentPattern.closed.CHARM),
16

CMine (class in PAMI.coveragePattern.basic.CMine), 50
CoMine (class in PAMI.correlatedPattern.basic.CoMine),

37
CoMinePlus (class in PAMI.correlatedPattern.basic.CoMinePlus),

40
conditionalTransactions() (in module

PAMI.periodicFrequentPattern.basic.PSGrowth),
72

countSup() (PAMI.sequentialPatternMining.basic.SPAM.SPAM
method), 318

CPFPMiner (class in PAMI.periodicFrequentPattern.closed.CPFPMiner),
81

CPPG (class in PAMI.coveragePattern.basic.CPPG), 54
createConditionalTree()

(PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.Tree
method), 114

createPrefixTree() (PAMI.localPeriodicPattern.basic.LPPGrowth.Tree
method), 101

createPrefixTree() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.Tree
method), 114

createTransaction()
(PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Dataset
method), 206

creatingCoverageItems()
(PAMI.coveragePattern.basic.CMine.CMine
method), 52

CUFPTree (class in PAMI.uncertainFrequentPattern.basic.CUFPTree),
267

D
Dataset (class in PAMI.highUtilitySpatialPattern.topk.TKSHUIM),

205
deleteNode() (PAMI.localPeriodicPattern.basic.LPPGrowth.Tree

method), 101
deleteNode() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.Tree

method), 114
DfsPruning() (PAMI.sequentialPatternMining.basic.SPAM.SPAM

method), 317

E
ECLAT (class in PAMI.frequentPattern.basic.ECLAT), 5
ECLATbitset (class in

PAMI.frequentPattern.basic.ECLATbitset),
10

ECLATDiffset (class in
PAMI.frequentPattern.basic.ECLATDiffset), 8

EFIM (class in PAMI.highUtilityPattern.basic.EFIM), 216
Element (class in PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth),

247
endTime (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

attribute), 210

337

PAMI, Release 2024.04.23

EPCPGrowth (class in PAMI.periodicCorrelatedPattern.basic.EPCPGrowth),
143

F
FAE (class in PAMI.frequentPattern.topk.FAE), 22
FCPGrowth (class in PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth),

247
FFIMiner (class in PAMI.fuzzyFrequentPattern.basic.FFIMiner),

243
FFSPMiner (class in PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner),

251
FGPFPMiner (class in PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner),

260
finalPatterns (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

attribute), 210
findSeparator() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.generatePFListver2

method), 115
findSeparator() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.generatePFTreever2

method), 116
fixNodeLinks() (PAMI.localPeriodicPattern.basic.LPPGrowth.Tree

method), 101
fixNodeLinks() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.Tree

method), 114
FPFPMiner (class in PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner),

256
FPGrowth (class in PAMI.frequentPattern.basic.FPGrowth),

13
FTApriori (class in PAMI.faultTolerantFrequentPattern.basic.FTApriori),

43
FTFPGrowth (class in PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth),

46

G
generateAllPatterns()

(PAMI.coveragePattern.basic.CMine.CMine
method), 52

generatePFListver2 (class in
PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth),
115

generatePFTreever2 (class in
PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth),
116

genPatterns() (PAMI.coveragePattern.basic.CMine.CMine
method), 52

getChild() (PAMI.localPeriodicPattern.basic.LPPGrowth.Node
method), 100

getChild() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.Node
method), 113

getItems() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction
method), 215

getLastPosition() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction
method), 215

getMaxItem() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Dataset
method), 206

getMemoryRSS() (PAMI.correlatedPattern.basic.CoMine.CoMine
method), 39

getMemoryRSS() (PAMI.correlatedPattern.basic.CoMinePlus.CoMinePlus
method), 42

getMemoryRSS() (PAMI.coveragePattern.basic.CMine.CMine
method), 52

getMemoryRSS() (PAMI.coveragePattern.basic.CPPG.CPPG
method), 56

getMemoryRSS() (PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori
method), 45

getMemoryRSS() (PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth
method), 49

getMemoryRSS() (PAMI.frequentPattern.basic.Apriori.Apriori
method), 4

getMemoryRSS() (PAMI.frequentPattern.basic.ECLAT.ECLAT
method), 7

getMemoryRSS() (PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset
method), 12

getMemoryRSS() (PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset
method), 9

getMemoryRSS() (PAMI.frequentPattern.basic.FPGrowth.FPGrowth
method), 15

getMemoryRSS() (PAMI.frequentPattern.closed.CHARM.CHARM
method), 18

getMemoryRSS() (PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth
method), 21

getMemoryRSS() (PAMI.frequentPattern.topk.FAE.FAE
method), 24

getMemoryRSS() (PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth
method), 250

getMemoryRSS() (PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner
method), 245

getMemoryRSS() (PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner
method), 254

getMemoryRSS() (PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner
method), 263

getMemoryRSS() (PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner
method), 259

getMemoryRSS() (PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT
method), 170

getMemoryRSS() (PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat
method), 178

getMemoryRSS() (PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner
method), 174

getMemoryRSS() (PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM
method), 191

getMemoryRSS() (PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM
method), 196

getMemoryRSS() (PAMI.highUtilityPattern.basic.EFIM.EFIM
method), 219

getMemoryRSS() (PAMI.highUtilityPattern.basic.HMiner.HMiner
method), 222

getMemoryRSS() (PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth
method), 225

338 Index

PAMI, Release 2024.04.23

getMemoryRSS() (PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM
method), 200

getMemoryRSS() (PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM
method), 204

getMemoryRSS() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
method), 210

getMemoryRSS() (PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth
method), 99

getMemoryRSS() (PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth
method), 104

getMemoryRSS() (PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth
method), 108

getMemoryRSS() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth
method), 32

getMemoryRSS() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus
method), 36

getMemoryRSS() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth
method), 112

getMemoryRSS() (PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS
method), 119

getMemoryRSS() (PAMI.partialPeriodicPattern.basic.GThreePGrowth.GThreePGrowth
method), 130

getMemoryRSS() (PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT
method), 126

getMemoryRSS() (PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth
method), 122

getMemoryRSS() (PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose
method), 134

getMemoryRSS() (PAMI.partialPeriodicPattern.maximal.Max3PGrowth.Max3PGrowth
method), 138

getMemoryRSS() (PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner
method), 141

getMemoryRSS() (PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth
method), 329

getMemoryRSS() (PAMI.periodicCorrelatedPattern.basic.EPCPGrowth.EPCPGrowth
method), 146

getMemoryRSS() (PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT
method), 76

getMemoryRSS() (PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth
method), 63

getMemoryRSS() (PAMI.periodicFrequentPattern.basic.PFPGrowthPlus.PFPGrowthPlus
method), 67

getMemoryRSS() (PAMI.periodicFrequentPattern.basic.PFPMC.PFPMC
method), 80

getMemoryRSS() (PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth
method), 71

getMemoryRSS() (PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner
method), 83

getMemoryRSS() (PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth
method), 87

getMemoryRSS() (PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner
method), 91

getMemoryRSS() (PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth
method), 94

getMemoryRSS() (PAMI.recurringPattern.basic.RPGrowth.RPGrowth
method), 163

getMemoryRSS() (PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth
method), 28

getMemoryRSS() (PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM
method), 186

getMemoryRSS() (PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan
method), 321

getMemoryRSS() (PAMI.sequentialPatternMining.basic.SPADE.SPADE
method), 312

getMemoryRSS() (PAMI.sequentialPatternMining.basic.SPAM.SPAM
method), 318

getMemoryRSS() (PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat
method), 155

getMemoryRSS() (PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth
method), 151

getMemoryRSS() (PAMI.stablePeriodicFrequentPattern.topK.TSPIN.TSPIN
method), 159

getMemoryRSS() (PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree
method), 270

getMemoryRSS() (PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth
method), 274

getMemoryRSS() (PAMI.uncertainFrequentPattern.basic.TubeP.TUFP
method), 282

getMemoryRSS() (PAMI.uncertainFrequentPattern.basic.TubeS.TubeS
method), 286

getMemoryRSS() (PAMI.uncertainFrequentPattern.basic.TUFP.TUFP
method), 278

getMemoryRSS() (PAMI.uncertainFrequentPattern.basic.UFGrowth.UFGrowth
method), 290

getMemoryRSS() (PAMI.uncertainFrequentPattern.basic.UVECLAT.UVEclat
method), 293

getMemoryRSS() (PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth
method), 307

getMemoryRSS() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth
method), 297

getMemoryRSS() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus
method), 302

getMemoryRSS() (PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth
method), 238

getMemoryRSS() (PAMI.weightedFrequentPattern.basic.WFIM.WFIM
method), 229

getMemoryRSS() (PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner
method), 234

getMemoryUSS() (PAMI.correlatedPattern.basic.CoMine.CoMine
method), 39

getMemoryUSS() (PAMI.correlatedPattern.basic.CoMinePlus.CoMinePlus
method), 42

getMemoryUSS() (PAMI.coveragePattern.basic.CMine.CMine
method), 53

getMemoryUSS() (PAMI.coveragePattern.basic.CPPG.CPPG
method), 56

getMemoryUSS() (PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori
method), 45

Index 339

PAMI, Release 2024.04.23

getMemoryUSS() (PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth
method), 49

getMemoryUSS() (PAMI.frequentPattern.basic.Apriori.Apriori
method), 4

getMemoryUSS() (PAMI.frequentPattern.basic.ECLAT.ECLAT
method), 7

getMemoryUSS() (PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset
method), 12

getMemoryUSS() (PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset
method), 9

getMemoryUSS() (PAMI.frequentPattern.basic.FPGrowth.FPGrowth
method), 15

getMemoryUSS() (PAMI.frequentPattern.closed.CHARM.CHARM
method), 18

getMemoryUSS() (PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth
method), 21

getMemoryUSS() (PAMI.frequentPattern.topk.FAE.FAE
method), 24

getMemoryUSS() (PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth
method), 250

getMemoryUSS() (PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner
method), 246

getMemoryUSS() (PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner
method), 255

getMemoryUSS() (PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner
method), 263

getMemoryUSS() (PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner
method), 259

getMemoryUSS() (PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT
method), 170

getMemoryUSS() (PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat
method), 178

getMemoryUSS() (PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner
method), 174

getMemoryUSS() (PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM
method), 191

getMemoryUSS() (PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM
method), 196

getMemoryUSS() (PAMI.highUtilityPattern.basic.EFIM.EFIM
method), 219

getMemoryUSS() (PAMI.highUtilityPattern.basic.HMiner.HMiner
method), 222

getMemoryUSS() (PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth
method), 225

getMemoryUSS() (PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM
method), 200

getMemoryUSS() (PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM
method), 204

getMemoryUSS() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
method), 210

getMemoryUSS() (PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth
method), 99

getMemoryUSS() (PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth
method), 104

getMemoryUSS() (PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth
method), 108

getMemoryUSS() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth
method), 32

getMemoryUSS() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus
method), 36

getMemoryUSS() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth
method), 112

getMemoryUSS() (PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS
method), 119

getMemoryUSS() (PAMI.partialPeriodicPattern.basic.GThreePGrowth.GThreePGrowth
method), 130

getMemoryUSS() (PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT
method), 126

getMemoryUSS() (PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth
method), 122

getMemoryUSS() (PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose
method), 134

getMemoryUSS() (PAMI.partialPeriodicPattern.maximal.Max3PGrowth.Max3PGrowth
method), 138

getMemoryUSS() (PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner
method), 141

getMemoryUSS() (PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth
method), 329

getMemoryUSS() (PAMI.periodicCorrelatedPattern.basic.EPCPGrowth.EPCPGrowth
method), 146

getMemoryUSS() (PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT
method), 76

getMemoryUSS() (PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth
method), 63

getMemoryUSS() (PAMI.periodicFrequentPattern.basic.PFPGrowthPlus.PFPGrowthPlus
method), 67

getMemoryUSS() (PAMI.periodicFrequentPattern.basic.PFPMC.PFPMC
method), 80

getMemoryUSS() (PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth
method), 71

getMemoryUSS() (PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner
method), 83

getMemoryUSS() (PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth
method), 87

getMemoryUSS() (PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner
method), 91

getMemoryUSS() (PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth
method), 94

getMemoryUSS() (PAMI.recurringPattern.basic.RPGrowth.RPGrowth
method), 163

getMemoryUSS() (PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth
method), 28

getMemoryUSS() (PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM
method), 186

getMemoryUSS() (PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan
method), 321

getMemoryUSS() (PAMI.sequentialPatternMining.basic.SPADE.SPADE
method), 312

340 Index

PAMI, Release 2024.04.23

getMemoryUSS() (PAMI.sequentialPatternMining.basic.SPAM.SPAM
method), 318

getMemoryUSS() (PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat
method), 155

getMemoryUSS() (PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth
method), 151

getMemoryUSS() (PAMI.stablePeriodicFrequentPattern.topK.TSPIN.TSPIN
method), 159

getMemoryUSS() (PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree
method), 270

getMemoryUSS() (PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth
method), 274

getMemoryUSS() (PAMI.uncertainFrequentPattern.basic.TubeP.TUFP
method), 282

getMemoryUSS() (PAMI.uncertainFrequentPattern.basic.TubeS.TubeS
method), 286

getMemoryUSS() (PAMI.uncertainFrequentPattern.basic.TUFP.TUFP
method), 278

getMemoryUSS() (PAMI.uncertainFrequentPattern.basic.UFGrowth.UFGrowth
method), 290

getMemoryUSS() (PAMI.uncertainFrequentPattern.basic.UVECLAT.UVEclat
method), 293

getMemoryUSS() (PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth
method), 307

getMemoryUSS() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth
method), 297

getMemoryUSS() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus
method), 302

getMemoryUSS() (PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth
method), 238

getMemoryUSS() (PAMI.weightedFrequentPattern.basic.WFIM.WFIM
method), 229

getMemoryUSS() (PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner
method), 234

getPatterns() (PAMI.correlatedPattern.basic.CoMine.CoMine
method), 39

getPatterns() (PAMI.correlatedPattern.basic.CoMinePlus.CoMinePlus
method), 42

getPatterns() (PAMI.coveragePattern.basic.CMine.CMine
method), 53

getPatterns() (PAMI.coveragePattern.basic.CPPG.CPPG
method), 56

getPatterns() (PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori
method), 45

getPatterns() (PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth
method), 49

getPatterns() (PAMI.frequentPattern.basic.Apriori.Apriori
method), 4

getPatterns() (PAMI.frequentPattern.basic.ECLAT.ECLAT
method), 7

getPatterns() (PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset
method), 12

getPatterns() (PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset
method), 10

getPatterns() (PAMI.frequentPattern.basic.FPGrowth.FPGrowth
method), 15

getPatterns() (PAMI.frequentPattern.closed.CHARM.CHARM
method), 18

getPatterns() (PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth
method), 21

getPatterns() (PAMI.frequentPattern.topk.FAE.FAE
method), 24

getPatterns() (PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth
method), 250

getPatterns() (PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner
method), 246

getPatterns() (PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner
method), 255

getPatterns() (PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner
method), 263

getPatterns() (PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner
method), 259

getPatterns() (PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT
method), 170

getPatterns() (PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat
method), 178

getPatterns() (PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner
method), 174

getPatterns() (PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM
method), 191

getPatterns() (PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM
method), 196

getPatterns() (PAMI.highUtilityPattern.basic.EFIM.EFIM
method), 219

getPatterns() (PAMI.highUtilityPattern.basic.HMiner.HMiner
method), 222

getPatterns() (PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth
method), 225

getPatterns() (PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM
method), 200

getPatterns() (PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM
method), 204

getPatterns() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
method), 210

getPatterns() (PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth
method), 99

getPatterns() (PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth
method), 104

getPatterns() (PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth
method), 108

getPatterns() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth
method), 32

getPatterns() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus
method), 36

getPatterns() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth
method), 112

getPatterns() (PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS
method), 119

Index 341

PAMI, Release 2024.04.23

getPatterns() (PAMI.partialPeriodicPattern.basic.GThreePGrowth.GThreePGrowth
method), 131

getPatterns() (PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT
method), 127

getPatterns() (PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth
method), 123

getPatterns() (PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose
method), 134

getPatterns() (PAMI.partialPeriodicPattern.maximal.Max3PGrowth.Max3PGrowth
method), 138

getPatterns() (PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner
method), 142

getPatterns() (PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth
method), 329

getPatterns() (PAMI.periodicCorrelatedPattern.basic.EPCPGrowth.EPCPGrowth
method), 146

getPatterns() (PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT
method), 76

getPatterns() (PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth
method), 63

getPatterns() (PAMI.periodicFrequentPattern.basic.PFPGrowthPlus.PFPGrowthPlus
method), 67

getPatterns() (PAMI.periodicFrequentPattern.basic.PFPMC.PFPMC
method), 80

getPatterns() (PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth
method), 71

getPatterns() (PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner
method), 84

getPatterns() (PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth
method), 87

getPatterns() (PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner
method), 91

getPatterns() (PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth
method), 94

getPatterns() (PAMI.recurringPattern.basic.RPGrowth.RPGrowth
method), 163

getPatterns() (PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth
method), 28

getPatterns() (PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM
method), 186

getPatterns() (PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan
method), 321

getPatterns() (PAMI.sequentialPatternMining.basic.SPADE.SPADE
method), 313

getPatterns() (PAMI.sequentialPatternMining.basic.SPAM.SPAM
method), 318

getPatterns() (PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat
method), 155

getPatterns() (PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth
method), 151

getPatterns() (PAMI.stablePeriodicFrequentPattern.topK.TSPIN.TSPIN
method), 159

getPatterns() (PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree
method), 270

getPatterns() (PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth
method), 274

getPatterns() (PAMI.uncertainFrequentPattern.basic.TubeP.TUFP
method), 282

getPatterns() (PAMI.uncertainFrequentPattern.basic.TubeS.TubeS
method), 286

getPatterns() (PAMI.uncertainFrequentPattern.basic.TUFP.TUFP
method), 278

getPatterns() (PAMI.uncertainFrequentPattern.basic.UFGrowth.UFGrowth
method), 290

getPatterns() (PAMI.uncertainFrequentPattern.basic.UVECLAT.UVEclat
method), 293

getPatterns() (PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth
method), 307

getPatterns() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth
method), 298

getPatterns() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus
method), 302

getPatterns() (PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth
method), 238

getPatterns() (PAMI.weightedFrequentPattern.basic.WFIM.WFIM
method), 229

getPatterns() (PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner
method), 234

getPatternsAsDataFrame()
(PAMI.correlatedPattern.basic.CoMine.CoMine
method), 39

getPatternsAsDataFrame()
(PAMI.correlatedPattern.basic.CoMinePlus.CoMinePlus
method), 42

getPatternsAsDataFrame()
(PAMI.coveragePattern.basic.CMine.CMine
method), 53

getPatternsAsDataFrame()
(PAMI.coveragePattern.basic.CPPG.CPPG
method), 56

getPatternsAsDataFrame()
(PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori
method), 46

getPatternsAsDataFrame()
(PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth
method), 49

getPatternsAsDataFrame()
(PAMI.frequentPattern.basic.Apriori.Apriori
method), 4

getPatternsAsDataFrame()
(PAMI.frequentPattern.basic.ECLAT.ECLAT
method), 7

getPatternsAsDataFrame()
(PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset
method), 12

getPatternsAsDataFrame()
(PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset
method), 10

342 Index

PAMI, Release 2024.04.23

getPatternsAsDataFrame()
(PAMI.frequentPattern.basic.FPGrowth.FPGrowth
method), 15

getPatternsAsDataFrame()
(PAMI.frequentPattern.closed.CHARM.CHARM
method), 18

getPatternsAsDataFrame()
(PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth
method), 21

getPatternsAsDataFrame()
(PAMI.frequentPattern.topk.FAE.FAE method),
24

getPatternsAsDataFrame()
(PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth
method), 250

getPatternsAsDataFrame()
(PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner
method), 246

getPatternsAsDataFrame()
(PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner
method), 255

getPatternsAsDataFrame()
(PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner
method), 263

getPatternsAsDataFrame()
(PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner
method), 259

getPatternsAsDataFrame()
(PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT
method), 170

getPatternsAsDataFrame()
(PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat
method), 179

getPatternsAsDataFrame()
(PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner
method), 174

getPatternsAsDataFrame()
(PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM
method), 191

getPatternsAsDataFrame()
(PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM
method), 196

getPatternsAsDataFrame()
(PAMI.highUtilityPattern.basic.EFIM.EFIM
method), 219

getPatternsAsDataFrame()
(PAMI.highUtilityPattern.basic.HMiner.HMiner
method), 222

getPatternsAsDataFrame()
(PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth
method), 225

getPatternsAsDataFrame()
(PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM
method), 200

getPatternsAsDataFrame()
(PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM
method), 205

getPatternsAsDataFrame()
(PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
method), 210

getPatternsAsDataFrame()
(PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth
method), 99

getPatternsAsDataFrame()
(PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth
method), 105

getPatternsAsDataFrame()
(PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth
method), 108

getPatternsAsDataFrame()
(PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth
method), 33

getPatternsAsDataFrame()
(PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus
method), 36

getPatternsAsDataFrame()
(PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth
method), 112

getPatternsAsDataFrame()
(PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS
method), 119

getPatternsAsDataFrame()
(PAMI.partialPeriodicPattern.basic.GThreePGrowth.GThreePGrowth
method), 131

getPatternsAsDataFrame()
(PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT
method), 127

getPatternsAsDataFrame()
(PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth
method), 123

getPatternsAsDataFrame()
(PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose
method), 134

getPatternsAsDataFrame()
(PAMI.partialPeriodicPattern.maximal.Max3PGrowth.Max3PGrowth
method), 138

getPatternsAsDataFrame()
(PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner
method), 142

getPatternsAsDataFrame()
(PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth
method), 329

getPatternsAsDataFrame()
(PAMI.periodicCorrelatedPattern.basic.EPCPGrowth.EPCPGrowth
method), 146

getPatternsAsDataFrame()
(PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT
method), 76

Index 343

PAMI, Release 2024.04.23

getPatternsAsDataFrame()
(PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth
method), 63

getPatternsAsDataFrame()
(PAMI.periodicFrequentPattern.basic.PFPGrowthPlus.PFPGrowthPlus
method), 67

getPatternsAsDataFrame()
(PAMI.periodicFrequentPattern.basic.PFPMC.PFPMC
method), 80

getPatternsAsDataFrame()
(PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth
method), 72

getPatternsAsDataFrame()
(PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner
method), 84

getPatternsAsDataFrame()
(PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth
method), 88

getPatternsAsDataFrame()
(PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner
method), 91

getPatternsAsDataFrame()
(PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth
method), 94

getPatternsAsDataFrame()
(PAMI.recurringPattern.basic.RPGrowth.RPGrowth
method), 163

getPatternsAsDataFrame()
(PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth
method), 29

getPatternsAsDataFrame()
(PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM
method), 186

getPatternsAsDataFrame()
(PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan
method), 321

getPatternsAsDataFrame()
(PAMI.sequentialPatternMining.basic.SPADE.SPADE
method), 313

getPatternsAsDataFrame()
(PAMI.sequentialPatternMining.basic.SPAM.SPAM
method), 318

getPatternsAsDataFrame()
(PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat
method), 155

getPatternsAsDataFrame()
(PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth
method), 151

getPatternsAsDataFrame()
(PAMI.stablePeriodicFrequentPattern.topK.TSPIN.TSPIN
method), 159

getPatternsAsDataFrame()
(PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree
method), 270

getPatternsAsDataFrame()
(PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth
method), 274

getPatternsAsDataFrame()
(PAMI.uncertainFrequentPattern.basic.TubeP.TUFP
method), 282

getPatternsAsDataFrame()
(PAMI.uncertainFrequentPattern.basic.TubeS.TubeS
method), 286

getPatternsAsDataFrame()
(PAMI.uncertainFrequentPattern.basic.TUFP.TUFP
method), 278

getPatternsAsDataFrame()
(PAMI.uncertainFrequentPattern.basic.UFGrowth.UFGrowth
method), 290

getPatternsAsDataFrame()
(PAMI.uncertainFrequentPattern.basic.UVECLAT.UVEclat
method), 293

getPatternsAsDataFrame()
(PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth
method), 307

getPatternsAsDataFrame()
(PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth
method), 298

getPatternsAsDataFrame()
(PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus
method), 302

getPatternsAsDataFrame()
(PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth
method), 238

getPatternsAsDataFrame()
(PAMI.weightedFrequentPattern.basic.WFIM.WFIM
method), 229

getPatternsAsDataFrame()
(PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner
method), 234

getPer_Sup() (PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner
method), 91

getPeriodAndSupport() (in module
PAMI.periodicFrequentPattern.basic.PSGrowth),
72

getPmus() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction
method), 215

getRuntime() (PAMI.correlatedPattern.basic.CoMine.CoMine
method), 39

getRuntime() (PAMI.correlatedPattern.basic.CoMinePlus.CoMinePlus
method), 42

getRuntime() (PAMI.coveragePattern.basic.CMine.CMine
method), 53

getRuntime() (PAMI.coveragePattern.basic.CPPG.CPPG
method), 56

getRuntime() (PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori
method), 46

getRuntime() (PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth

344 Index

PAMI, Release 2024.04.23

method), 49
getRuntime() (PAMI.frequentPattern.basic.Apriori.Apriori

method), 4
getRuntime() (PAMI.frequentPattern.basic.ECLAT.ECLAT

method), 7
getRuntime() (PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset

method), 12
getRuntime() (PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset

method), 10
getRuntime() (PAMI.frequentPattern.basic.FPGrowth.FPGrowth

method), 15
getRuntime() (PAMI.frequentPattern.closed.CHARM.CHARM

method), 18
getRuntime() (PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth

method), 21
getRuntime() (PAMI.frequentPattern.topk.FAE.FAE

method), 24
getRuntime() (PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth

method), 251
getRuntime() (PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner

method), 246
getRuntime() (PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner

method), 255
getRuntime() (PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner

method), 263
getRuntime() (PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner

method), 259
getRuntime() (PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT

method), 170
getRuntime() (PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat

method), 179
getRuntime() (PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner

method), 174
getRuntime() (PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM

method), 191
getRuntime() (PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM

method), 196
getRuntime() (PAMI.highUtilityPattern.basic.EFIM.EFIM

method), 219
getRuntime() (PAMI.highUtilityPattern.basic.HMiner.HMiner

method), 222
getRuntime() (PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth

method), 225
getRuntime() (PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM

method), 200
getRuntime() (PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM

method), 205
getRuntime() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

method), 210
getRuntime() (PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth

method), 99
getRuntime() (PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth

method), 105
getRuntime() (PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth

method), 108
getRuntime() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth

method), 33
getRuntime() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus

method), 36
getRuntime() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth

method), 112
getRuntime() (PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS

method), 119
getRuntime() (PAMI.partialPeriodicPattern.basic.GThreePGrowth.GThreePGrowth

method), 131
getRuntime() (PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT

method), 127
getRuntime() (PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth

method), 123
getRuntime() (PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose

method), 134
getRuntime() (PAMI.partialPeriodicPattern.maximal.Max3PGrowth.Max3PGrowth

method), 138
getRuntime() (PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner

method), 142
getRuntime() (PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth

method), 330
getRuntime() (PAMI.periodicCorrelatedPattern.basic.EPCPGrowth.EPCPGrowth

method), 146
getRuntime() (PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT

method), 76
getRuntime() (PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth

method), 63
getRuntime() (PAMI.periodicFrequentPattern.basic.PFPGrowthPlus.PFPGrowthPlus

method), 67
getRuntime() (PAMI.periodicFrequentPattern.basic.PFPMC.PFPMC

method), 80
getRuntime() (PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth

method), 72
getRuntime() (PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner

method), 84
getRuntime() (PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth

method), 88
getRuntime() (PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner

method), 91
getRuntime() (PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth

method), 95
getRuntime() (PAMI.recurringPattern.basic.RPGrowth.RPGrowth

method), 163
getRuntime() (PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth

method), 29
getRuntime() (PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM

method), 186
getRuntime() (PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan

method), 321
getRuntime() (PAMI.sequentialPatternMining.basic.SPADE.SPADE

method), 313
getRuntime() (PAMI.sequentialPatternMining.basic.SPAM.SPAM

Index 345

PAMI, Release 2024.04.23

method), 318
getRuntime() (PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat

method), 155
getRuntime() (PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth

method), 151
getRuntime() (PAMI.stablePeriodicFrequentPattern.topK.TSPIN.TSPIN

method), 159
getRuntime() (PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree

method), 270
getRuntime() (PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth

method), 275
getRuntime() (PAMI.uncertainFrequentPattern.basic.TubeP.TUFP

method), 282
getRuntime() (PAMI.uncertainFrequentPattern.basic.TubeS.TubeS

method), 286
getRuntime() (PAMI.uncertainFrequentPattern.basic.TUFP.TUFP

method), 278
getRuntime() (PAMI.uncertainFrequentPattern.basic.UFGrowth.UFGrowth

method), 290
getRuntime() (PAMI.uncertainFrequentPattern.basic.UVECLAT.UVEclat

method), 293
getRuntime() (PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth

method), 307
getRuntime() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth

method), 298
getRuntime() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus

method), 302
getRuntime() (PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth

method), 239
getRuntime() (PAMI.weightedFrequentPattern.basic.WFIM.WFIM

method), 230
getRuntime() (PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner

method), 234
getSameSeq() (PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan

method), 322
getTransactions() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Dataset

method), 206
getUtilities() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction

method), 215
GFPGrowth (class in PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth),

303
GPFgrowth (class in PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth),

110
GPFPMiner (class in PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner),

171
GThreePGrowth (class in

PAMI.partialPeriodicPattern.basic.GThreePGrowth),
128

H
HDSHUIM (class in PAMI.highUtilitySpatialPattern.basic.HDSHUIM),

197
heapList (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

attribute), 210

HMiner (class in PAMI.highUtilityPattern.basic.HMiner),
219

HUFIM (class in PAMI.highUtilityFrequentPattern.basic.HUFIM),
188

I
iFile (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

attribute), 210
insertionSort() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction

method), 215
intersection() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

method), 210
intTostr (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

attribute), 210
is_equal() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

method), 211

K
k3PMiner (class in PAMI.partialPeriodicPattern.topk.k3PMiner),

139
kPFPMiner (class in PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner),

88

L
lno (PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner

attribute), 91
LPPGrowth (class in PAMI.localPeriodicPattern.basic.LPPGrowth),

96
LPPMBreadth (class in

PAMI.localPeriodicPattern.basic.LPPMBreadth),
102

LPPMDepth (class in PAMI.localPeriodicPattern.basic.LPPMDepth),
105

M
main() (in module PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth),

251
main() (in module PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM),

197
main() (in module PAMI.highUtilitySpatialPattern.topk.TKSHUIM),

215
make1LenDatabase() (PAMI.sequentialPatternMining.basic.SPADE.SPADE

method), 313
make2BitDatabase() (PAMI.sequentialPatternMining.basic.SPAM.SPAM

method), 318
make2LenDatabase() (PAMI.sequentialPatternMining.basic.SPADE.SPADE

method), 313
make3LenDatabase() (PAMI.sequentialPatternMining.basic.SPADE.SPADE

method), 313
makeNext() (PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan

method), 322
makeNextRow() (PAMI.sequentialPatternMining.basic.SPADE.SPADE

method), 313

346 Index

PAMI, Release 2024.04.23

makeNextRowSame() (PAMI.sequentialPatternMining.basic.SPADE.SPADE
method), 313

makeNextRowSame2() (PAMI.sequentialPatternMining.basic.SPADE.SPADE
method), 313

makeNextRowSame3() (PAMI.sequentialPatternMining.basic.SPADE.SPADE
method), 314

makeNextSame() (PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan
method), 322

makeSeqDatabaseFirst()
(PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan
method), 322

makeSeqDatabaseSame()
(PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan
method), 322

makeSupDatabase() (PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan
method), 322

makexLenDatabase() (PAMI.sequentialPatternMining.basic.SPADE.SPADE
method), 314

makexLenDatabaseSame()
(PAMI.sequentialPatternMining.basic.SPADE.SPADE
method), 314

mapNeighbours() (PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat
method), 179

mapNeighbours() (PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner
method), 174

Max3PGrowth (class in
PAMI.partialPeriodicPattern.maximal.Max3PGrowth),
135

MaxFPGrowth (class in
PAMI.frequentPattern.maximal.MaxFPGrowth),
19

maxItem (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Dataset
attribute), 206

maxMemory (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
attribute), 211

MaxPFGrowth (class in
PAMI.periodicFrequentPattern.maximal.MaxPFGrowth),
84

memoryRSS (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
attribute), 211

memoryUSS (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
attribute), 211

mine() (PAMI.correlatedPattern.basic.CoMine.CoMine
method), 40

mine() (PAMI.correlatedPattern.basic.CoMinePlus.CoMinePlus
method), 42

mine() (PAMI.coveragePattern.basic.CMine.CMine
method), 53

mine() (PAMI.coveragePattern.basic.CPPG.CPPG
method), 56

mine() (PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori
method), 46

mine() (PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth
method), 49

mine() (PAMI.frequentPattern.basic.Apriori.Apriori
method), 4

mine() (PAMI.frequentPattern.basic.ECLAT.ECLAT
method), 7

mine() (PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset
method), 13

mine() (PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset
method), 10

mine() (PAMI.frequentPattern.basic.FPGrowth.FPGrowth
method), 15

mine() (PAMI.frequentPattern.closed.CHARM.CHARM
method), 18

mine() (PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth
method), 21

mine() (PAMI.frequentPattern.topk.FAE.FAE method),
24

mine() (PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth
method), 251

mine() (PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner
method), 246

mine() (PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner
method), 255

mine() (PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner
method), 264

mine() (PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner
method), 259

mine() (PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT
method), 170

mine() (PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat
method), 179

mine() (PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner
method), 174

mine() (PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM
method), 192

mine() (PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM
method), 196

mine() (PAMI.highUtilityPattern.basic.EFIM.EFIM
method), 219

mine() (PAMI.highUtilityPattern.basic.HMiner.HMiner
method), 222

mine() (PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth
method), 225

mine() (PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM
method), 200

mine() (PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM
method), 205

mine() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
method), 211

mine() (PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth
method), 99

mine() (PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth
method), 105

mine() (PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth
method), 109

Index 347

PAMI, Release 2024.04.23

Mine() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth
method), 32

Mine() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus
method), 36

mine() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth
method), 112

mine() (PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS
method), 119

mine() (PAMI.partialPeriodicPattern.basic.GThreePGrowth.GThreePGrowth
method), 131

Mine() (PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT
method), 126

mine() (PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth
method), 123

mine() (PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose
method), 134

mine() (PAMI.partialPeriodicPattern.maximal.Max3PGrowth.Max3PGrowth
method), 139

mine() (PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner
method), 142

Mine() (PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth
method), 329

Mine() (PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT
method), 76

Mine() (PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth
method), 63

Mine() (PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth
method), 71

Mine() (PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner
method), 83

Mine() (PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth
method), 87

Mine() (PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth
method), 94

Mine() (PAMI.recurringPattern.basic.RPGrowth.RPGrowth
method), 163

Mine() (PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth
method), 28

Mine() (PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan
method), 321

Mine() (PAMI.sequentialPatternMining.basic.SPADE.SPADE
method), 312

mine() (PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat
method), 155

mine() (PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth
method), 151

mine() (PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree
method), 271

mine() (PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth
method), 275

mine() (PAMI.uncertainFrequentPattern.basic.TubeP.TUFP
method), 282

mine() (PAMI.uncertainFrequentPattern.basic.TubeS.TubeS
method), 286

mine() (PAMI.uncertainFrequentPattern.basic.TUFP.TUFP
method), 278

mine() (PAMI.uncertainFrequentPattern.basic.UFGrowth.UFGrowth
method), 290

mine() (PAMI.uncertainFrequentPattern.basic.UVECLAT.UVEclat
method), 293

mine() (PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth
method), 307

mine() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth
method), 298

mine() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus
method), 302

mine() (PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth
method), 239

mine() (PAMI.weightedFrequentPattern.basic.WFIM.WFIM
method), 230

mine() (PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner
method), 234

minUtil (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
attribute), 211

module
PAMI.correlatedPattern.basic.CoMine, 37
PAMI.correlatedPattern.basic.CoMinePlus,

40
PAMI.coveragePattern.basic.CMine, 50
PAMI.coveragePattern.basic.CPPG, 54
PAMI.faultTolerantFrequentPattern.basic.FTApriori,

43
PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth,

46
PAMI.frequentPattern.basic.Apriori, 2
PAMI.frequentPattern.basic.ECLAT, 5
PAMI.frequentPattern.basic.ECLATbitset,

10
PAMI.frequentPattern.basic.ECLATDiffset,

8
PAMI.frequentPattern.basic.FPGrowth, 13
PAMI.frequentPattern.closed.CHARM, 16
PAMI.frequentPattern.maximal.MaxFPGrowth,

19
PAMI.frequentPattern.topk.FAE, 22
PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth,

247
PAMI.fuzzyFrequentPattern.basic.FFIMiner,

243
PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner,

251
PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner,

260
PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner,

256
PAMI.georeferencedFrequentPattern.basic.SpatialECLAT,

167
PAMI.georeferencedPartialPeriodicPattern.basic.STEclat,

348 Index

PAMI, Release 2024.04.23

175
PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner,

171
PAMI.highUtilityFrequentPattern.basic.HUFIM,

188
PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM,

192
PAMI.highUtilityPattern.basic.EFIM, 216
PAMI.highUtilityPattern.basic.HMiner, 219
PAMI.highUtilityPattern.basic.UPGrowth,

223
PAMI.highUtilitySpatialPattern.basic.HDSHUIM,

197
PAMI.highUtilitySpatialPattern.basic.SHUIM,

201
PAMI.highUtilitySpatialPattern.topk.TKSHUIM,

205
PAMI.localPeriodicPattern.basic.LPPGrowth,

96
PAMI.localPeriodicPattern.basic.LPPMBreadth,

102
PAMI.localPeriodicPattern.basic.LPPMDepth,

105
PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth,

30
PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus,

33
PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth,

110
PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS,

116
PAMI.partialPeriodicPattern.basic.GThreePGrowth,

128
PAMI.partialPeriodicPattern.basic.PPP_ECLAT,

124
PAMI.partialPeriodicPattern.basic.PPPGrowth,

120
PAMI.partialPeriodicPattern.closed.PPPClose,

131
PAMI.partialPeriodicPattern.maximal.Max3PGrowth,

135
PAMI.partialPeriodicPattern.topk.k3PMiner,

139
PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth,

326
PAMI.periodicCorrelatedPattern.basic.EPCPGrowth,

143
PAMI.periodicFrequentPattern.basic.PFECLAT,

73
PAMI.periodicFrequentPattern.basic.PFPGrowth,

61
PAMI.periodicFrequentPattern.basic.PFPGrowthPlus,

64
PAMI.periodicFrequentPattern.basic.PFPMC,

77
PAMI.periodicFrequentPattern.basic.PSGrowth,

68
PAMI.periodicFrequentPattern.closed.CPFPMiner,

81
PAMI.periodicFrequentPattern.maximal.MaxPFGrowth,

84
PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner,

88
PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP,

92
PAMI.recurringPattern.basic.RPGrowth, 160
PAMI.relativeFrequentPattern.basic.RSFPGrowth,

25
PAMI.relativeHighUtilityPattern.basic.RHUIM,

183
PAMI.sequentialPatternMining.basic.prefixSpan,

318
PAMI.sequentialPatternMining.basic.SPADE,

310
PAMI.sequentialPatternMining.basic.SPAM,

314
PAMI.sequentialPatternMining.closed.bide,

323
PAMI.stablePeriodicFrequentPattern.basic.SPPEclat,

152
PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth,

147
PAMI.stablePeriodicFrequentPattern.topK.TSPIN,

156
PAMI.uncertainFrequentPattern.basic.CUFPTree,

267
PAMI.uncertainFrequentPattern.basic.PUFGrowth,

271
PAMI.uncertainFrequentPattern.basic.TubeP,

279
PAMI.uncertainFrequentPattern.basic.TubeS,

283
PAMI.uncertainFrequentPattern.basic.TUFP,

275
PAMI.uncertainFrequentPattern.basic.UFGrowth,

287
PAMI.uncertainFrequentPattern.basic.UVECLAT,

290
PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth,

303
PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth,

294
PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus,

299
PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth,

235
PAMI.weightedFrequentPattern.basic.WFIM,

226

Index 349

PAMI, Release 2024.04.23

PAMI.weightedFrequentRegularPattern.basic.WFRIMiner,
231

N
Neighbours (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

attribute), 209
newNamesToOldNames (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

attribute), 211
nFile (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

attribute), 211
Node (class in PAMI.localPeriodicPattern.basic.LPPGrowth),

100
Node (class in PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth),

112
Node (class in PAMI.periodicFrequentPattern.basic.PSGrowth),

68

O
offset (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction

attribute), 215
oFile (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

attribute), 211
oldNamesToNewNames (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

attribute), 211
output() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

method), 211

P
PAMI.correlatedPattern.basic.CoMine

module, 37
PAMI.correlatedPattern.basic.CoMinePlus

module, 40
PAMI.coveragePattern.basic.CMine

module, 50
PAMI.coveragePattern.basic.CPPG

module, 54
PAMI.faultTolerantFrequentPattern.basic.FTApriori

module, 43
PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth

module, 46
PAMI.frequentPattern.basic.Apriori

module, 2
PAMI.frequentPattern.basic.ECLAT

module, 5
PAMI.frequentPattern.basic.ECLATbitset

module, 10
PAMI.frequentPattern.basic.ECLATDiffset

module, 8
PAMI.frequentPattern.basic.FPGrowth

module, 13
PAMI.frequentPattern.closed.CHARM

module, 16
PAMI.frequentPattern.maximal.MaxFPGrowth

module, 19

PAMI.frequentPattern.topk.FAE
module, 22

PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth
module, 247

PAMI.fuzzyFrequentPattern.basic.FFIMiner
module, 243

PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner
module, 251

PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner
module, 260

PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner
module, 256

PAMI.georeferencedFrequentPattern.basic.SpatialECLAT
module, 167

PAMI.georeferencedPartialPeriodicPattern.basic.STEclat
module, 175

PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner
module, 171

PAMI.highUtilityFrequentPattern.basic.HUFIM
module, 188

PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM
module, 192

PAMI.highUtilityPattern.basic.EFIM
module, 216

PAMI.highUtilityPattern.basic.HMiner
module, 219

PAMI.highUtilityPattern.basic.UPGrowth
module, 223

PAMI.highUtilitySpatialPattern.basic.HDSHUIM
module, 197

PAMI.highUtilitySpatialPattern.basic.SHUIM
module, 201

PAMI.highUtilitySpatialPattern.topk.TKSHUIM
module, 205

PAMI.localPeriodicPattern.basic.LPPGrowth
module, 96

PAMI.localPeriodicPattern.basic.LPPMBreadth
module, 102

PAMI.localPeriodicPattern.basic.LPPMDepth
module, 105

PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth
module, 30

PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus
module, 33

PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth
module, 110

PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS
module, 116

PAMI.partialPeriodicPattern.basic.GThreePGrowth
module, 128

PAMI.partialPeriodicPattern.basic.PPP_ECLAT
module, 124

PAMI.partialPeriodicPattern.basic.PPPGrowth
module, 120

350 Index

PAMI, Release 2024.04.23

PAMI.partialPeriodicPattern.closed.PPPClose
module, 131

PAMI.partialPeriodicPattern.maximal.Max3PGrowth
module, 135

PAMI.partialPeriodicPattern.topk.k3PMiner
module, 139

PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth
module, 326

PAMI.periodicCorrelatedPattern.basic.EPCPGrowth
module, 143

PAMI.periodicFrequentPattern.basic.PFECLAT
module, 73

PAMI.periodicFrequentPattern.basic.PFPGrowth
module, 61

PAMI.periodicFrequentPattern.basic.PFPGrowthPlus
module, 64

PAMI.periodicFrequentPattern.basic.PFPMC
module, 77

PAMI.periodicFrequentPattern.basic.PSGrowth
module, 68

PAMI.periodicFrequentPattern.closed.CPFPMiner
module, 81

PAMI.periodicFrequentPattern.maximal.MaxPFGrowth
module, 84

PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner
module, 88

PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP
module, 92

PAMI.recurringPattern.basic.RPGrowth
module, 160

PAMI.relativeFrequentPattern.basic.RSFPGrowth
module, 25

PAMI.relativeHighUtilityPattern.basic.RHUIM
module, 183

PAMI.sequentialPatternMining.basic.prefixSpan
module, 318

PAMI.sequentialPatternMining.basic.SPADE
module, 310

PAMI.sequentialPatternMining.basic.SPAM
module, 314

PAMI.sequentialPatternMining.closed.bide
module, 323

PAMI.stablePeriodicFrequentPattern.basic.SPPEclat
module, 152

PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth
module, 147

PAMI.stablePeriodicFrequentPattern.topK.TSPIN
module, 156

PAMI.uncertainFrequentPattern.basic.CUFPTree
module, 267

PAMI.uncertainFrequentPattern.basic.PUFGrowth
module, 271

PAMI.uncertainFrequentPattern.basic.TubeP
module, 279

PAMI.uncertainFrequentPattern.basic.TubeS
module, 283

PAMI.uncertainFrequentPattern.basic.TUFP
module, 275

PAMI.uncertainFrequentPattern.basic.UFGrowth
module, 287

PAMI.uncertainFrequentPattern.basic.UVECLAT
module, 290

PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth
module, 303

PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth
module, 294

PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus
module, 299

PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth
module, 235

PAMI.weightedFrequentPattern.basic.WFIM
module, 226

PAMI.weightedFrequentRegularPattern.basic.WFRIMiner
module, 231

PFECLAT (class in PAMI.periodicFrequentPattern.basic.PFECLAT),
73

PFgrowth (class in PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth),
113

PFPGrowth (class in PAMI.periodicFrequentPattern.basic.PFPGrowth),
61

PFPGrowthPlus (class in
PAMI.periodicFrequentPattern.basic.PFPGrowthPlus),
64

PFPMC (class in PAMI.periodicFrequentPattern.basic.PFPMC),
77

PPF_DFS (class in PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS),
116

PPGrowth (class in PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth),
326

PPP_ECLAT (class in PAMI.partialPeriodicPattern.basic.PPP_ECLAT),
124

PPPClose (class in PAMI.partialPeriodicPattern.closed.PPPClose),
131

PPPGrowth (class in PAMI.partialPeriodicPattern.basic.PPPGrowth),
120

prefixSpan (class in PAMI.sequentialPatternMining.basic.prefixSpan),
318

prefixUtility (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction
attribute), 215

printResults() (PAMI.correlatedPattern.basic.CoMine.CoMine
method), 40

printResults() (PAMI.correlatedPattern.basic.CoMinePlus.CoMinePlus
method), 43

printResults() (PAMI.coveragePattern.basic.CMine.CMine
method), 53

printResults() (PAMI.coveragePattern.basic.CPPG.CPPG
method), 56

printResults() (PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori

Index 351

PAMI, Release 2024.04.23

method), 46
printResults() (PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth

method), 49
printResults() (PAMI.frequentPattern.basic.Apriori.Apriori

method), 4
printResults() (PAMI.frequentPattern.basic.ECLAT.ECLAT

method), 7
printResults() (PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset

method), 13
printResults() (PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset

method), 10
printResults() (PAMI.frequentPattern.basic.FPGrowth.FPGrowth

method), 16
printResults() (PAMI.frequentPattern.closed.CHARM.CHARM

method), 18
printResults() (PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth

method), 21
printResults() (PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth

method), 251
printResults() (PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner

method), 246
printResults() (PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner

method), 255
printResults() (PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner

method), 264
printResults() (PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner

method), 259
printResults() (PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT

method), 170
printResults() (PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat

method), 179
printResults() (PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner

method), 175
printResults() (PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM

method), 192
printResults() (PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM

method), 196
printResults() (PAMI.highUtilityPattern.basic.EFIM.EFIM

method), 219
printResults() (PAMI.highUtilityPattern.basic.HMiner.HMiner

method), 222
printResults() (PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth

method), 225
printResults() (PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM

method), 200
printResults() (PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM

method), 205
printResults() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

method), 211
printResults() (PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth

method), 99
printResults() (PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth

method), 105
printResults() (PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth

method), 109
printResults() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth

method), 33
printResults() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus

method), 37
printResults() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth

method), 112
printResults() (PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS

method), 119
printResults() (PAMI.partialPeriodicPattern.basic.GThreePGrowth.GThreePGrowth

method), 131
printResults() (PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT

method), 127
printResults() (PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth

method), 123
printResults() (PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose

method), 135
printResults() (PAMI.partialPeriodicPattern.maximal.Max3PGrowth.Max3PGrowth

method), 139
printResults() (PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner

method), 142
printResults() (PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth

method), 330
printResults() (PAMI.periodicCorrelatedPattern.basic.EPCPGrowth.EPCPGrowth

method), 146
printResults() (PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT

method), 76
printResults() (PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth

method), 63
printResults() (PAMI.periodicFrequentPattern.basic.PFPGrowthPlus.PFPGrowthPlus

method), 67
printResults() (PAMI.periodicFrequentPattern.basic.PFPMC.PFPMC

method), 80
printResults() (PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth

method), 72
printResults() (PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner

method), 84
printResults() (PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth

method), 88
printResults() (PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner

method), 91
printResults() (PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth

method), 95
printResults() (PAMI.recurringPattern.basic.RPGrowth.RPGrowth

method), 164
printResults() (PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth

method), 29
printResults() (PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM

method), 186
printResults() (PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan

method), 323
printResults() (PAMI.sequentialPatternMining.basic.SPADE.SPADE

method), 314
printResults() (PAMI.sequentialPatternMining.basic.SPAM.SPAM

352 Index

PAMI, Release 2024.04.23

method), 318
printResults() (PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat

method), 155
printResults() (PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth

method), 151
printResults() (PAMI.stablePeriodicFrequentPattern.topK.TSPIN.TSPIN

method), 159
printResults() (PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree

method), 271
printResults() (PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth

method), 275
printResults() (PAMI.uncertainFrequentPattern.basic.TubeP.TUFP

method), 282
printResults() (PAMI.uncertainFrequentPattern.basic.TubeS.TubeS

method), 286
printResults() (PAMI.uncertainFrequentPattern.basic.TUFP.TUFP

method), 279
printResults() (PAMI.uncertainFrequentPattern.basic.UFGrowth.UFGrowth

method), 290
printResults() (PAMI.uncertainFrequentPattern.basic.UVECLAT.UVEclat

method), 294
printResults() (PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth

method), 307
printResults() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth

method), 298
printResults() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus

method), 303
printResults() (PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth

method), 239
printResults() (PAMI.weightedFrequentPattern.basic.WFIM.WFIM

method), 230
printResults() (PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner

method), 234
PrintStats() (PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth

method), 225
printTOPK() (PAMI.frequentPattern.topk.FAE.FAE

method), 24
printTree() (in module

PAMI.uncertainFrequentPattern.basic.TubeS),
287

printTree() (in module
PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus),
303

projectTransaction()
(PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction
method), 215

PSGrowth (class in PAMI.periodicFrequentPattern.basic.PSGrowth),
68

PUFGrowth (class in PAMI.uncertainFrequentPattern.basic.PUFGrowth),
271

R
removeUnpromisingItems()

(PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction

method), 215
RHUIM (class in PAMI.relativeHighUtilityPattern.basic.RHUIM),

183
RPGrowth (class in PAMI.recurringPattern.basic.RPGrowth),

160
RSFPGrowth (class in PAMI.relativeFrequentPattern.basic.RSFPGrowth),

25
run() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.calculateIP

method), 115
run() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.generatePFListver2

method), 116
run() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.generatePFTreever2

method), 116
run() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.PFgrowth

method), 113
runTime (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth

attribute), 112

S
save() (PAMI.correlatedPattern.basic.CoMine.CoMine

method), 40
save() (PAMI.correlatedPattern.basic.CoMinePlus.CoMinePlus

method), 43
save() (PAMI.coveragePattern.basic.CMine.CMine

method), 53
save() (PAMI.coveragePattern.basic.CPPG.CPPG

method), 56
save() (PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori

method), 46
save() (PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth

method), 49
save() (PAMI.frequentPattern.basic.Apriori.Apriori

method), 4
save() (PAMI.frequentPattern.basic.ECLAT.ECLAT

method), 7
save() (PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset

method), 13
save() (PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset

method), 10
save() (PAMI.frequentPattern.basic.FPGrowth.FPGrowth

method), 16
save() (PAMI.frequentPattern.closed.CHARM.CHARM

method), 19
save() (PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth

method), 21
save() (PAMI.frequentPattern.topk.FAE.FAE method),

25
save() (PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth

method), 251
save() (PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner

method), 246
save() (PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner

method), 255

Index 353

PAMI, Release 2024.04.23

save() (PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner
method), 264

save() (PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner
method), 260

save() (PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT
method), 170

save() (PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat
method), 179

save() (PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner
method), 175

save() (PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM
method), 192

save() (PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM
method), 196

save() (PAMI.highUtilityPattern.basic.EFIM.EFIM
method), 219

save() (PAMI.highUtilityPattern.basic.HMiner.HMiner
method), 222

save() (PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth
method), 225

save() (PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM
method), 201

save() (PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM
method), 205

save() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
method), 211

save() (PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth
method), 99

save() (PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth
method), 105

save() (PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth
method), 109

save() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth
method), 33

save() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus
method), 37

save() (PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth
method), 112

save() (PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS
method), 119

save() (PAMI.partialPeriodicPattern.basic.GThreePGrowth.GThreePGrowth
method), 131

save() (PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT
method), 127

save() (PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth
method), 123

save() (PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose
method), 135

save() (PAMI.partialPeriodicPattern.maximal.Max3PGrowth.Max3PGrowth
method), 139

save() (PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner
method), 142

save() (PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth
method), 330

save() (PAMI.periodicCorrelatedPattern.basic.EPCPGrowth.EPCPGrowth
method), 147

save() (PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT
method), 76

save() (PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth
method), 63

save() (PAMI.periodicFrequentPattern.basic.PFPGrowthPlus.PFPGrowthPlus
method), 68

save() (PAMI.periodicFrequentPattern.basic.PFPMC.PFPMC
method), 80

save() (PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth
method), 72

save() (PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner
method), 84

save() (PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth
method), 88

save() (PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner
method), 91

save() (PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth
method), 95

save() (PAMI.recurringPattern.basic.RPGrowth.RPGrowth
method), 164

save() (PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth
method), 29

save() (PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM
method), 187

save() (PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan
method), 323

save() (PAMI.sequentialPatternMining.basic.SPADE.SPADE
method), 314

save() (PAMI.sequentialPatternMining.basic.SPAM.SPAM
method), 318

save() (PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat
method), 155

save() (PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth
method), 151

save() (PAMI.stablePeriodicFrequentPattern.topK.TSPIN.TSPIN
method), 159

save() (PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree
method), 271

save() (PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth
method), 275

save() (PAMI.uncertainFrequentPattern.basic.TubeP.TUFP
method), 282

save() (PAMI.uncertainFrequentPattern.basic.TubeS.TubeS
method), 286

save() (PAMI.uncertainFrequentPattern.basic.TUFP.TUFP
method), 279

save() (PAMI.uncertainFrequentPattern.basic.UFGrowth.UFGrowth
method), 290

save() (PAMI.uncertainFrequentPattern.basic.UVECLAT.UVEclat
method), 294

save() (PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth
method), 307

354 Index

PAMI, Release 2024.04.23

save() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth
method), 298

save() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus
method), 303

save() (PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth
method), 239

save() (PAMI.weightedFrequentPattern.basic.WFIM.WFIM
method), 230

save() (PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner
method), 234

Second() (in module PAMI.uncertainFrequentPattern.basic.TubeS),
283

sep (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
attribute), 211

serchSame() (PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan
method), 323

SHUFIM (class in PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM),
192

SHUIM (class in PAMI.highUtilitySpatialPattern.basic.SHUIM),
201

sort_transaction() (PAMI.highUtilityPattern.basic.EFIM.EFIM
method), 219

sort_transaction() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
method), 212

sort_transaction() (PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM
method), 187

sortDatabase() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
method), 211

sortDatabase() (PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM
method), 187

SPADE (class in PAMI.sequentialPatternMining.basic.SPADE),
310

SPAM (class in PAMI.sequentialPatternMining.basic.SPAM),
314

SpatialECLAT (class in
PAMI.georeferencedFrequentPattern.basic.SpatialECLAT),
167

SPPEclat (class in PAMI.stablePeriodicFrequentPattern.basic.SPPEclat),
152

SPPGrowth (class in PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth),
147

SPPList (PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth
attribute), 151

Sstep() (PAMI.sequentialPatternMining.basic.SPAM.SPAM
method), 317

startMine() (PAMI.correlatedPattern.basic.CoMine.CoMine
method), 40

startMine() (PAMI.correlatedPattern.basic.CoMinePlus.CoMinePlus
method), 43

startMine() (PAMI.coveragePattern.basic.CMine.CMine
method), 53

startMine() (PAMI.coveragePattern.basic.CPPG.CPPG
method), 56

startMine() (PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori

method), 46
startMine() (PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth

method), 50
startMine() (PAMI.frequentPattern.basic.Apriori.Apriori

method), 5
startMine() (PAMI.frequentPattern.basic.ECLAT.ECLAT

method), 8
startMine() (PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset

method), 13
startMine() (PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset

method), 10
startMine() (PAMI.frequentPattern.basic.FPGrowth.FPGrowth

method), 16
startMine() (PAMI.frequentPattern.closed.CHARM.CHARM

method), 19
startMine() (PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth

method), 21
startMine() (PAMI.frequentPattern.topk.FAE.FAE

method), 25
startMine() (PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth

method), 251
startMine() (PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner

method), 246
startMine() (PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner

method), 255
startMine() (PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner

method), 264
startMine() (PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner

method), 260
startMine() (PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT

method), 171
startMine() (PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat

method), 179
startMine() (PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner

method), 175
startMine() (PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM

method), 192
startMine() (PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM

method), 197
startMine() (PAMI.highUtilityPattern.basic.EFIM.EFIM

method), 219
startMine() (PAMI.highUtilityPattern.basic.HMiner.HMiner

method), 222
startMine() (PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth

method), 226
startMine() (PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM

method), 201
startMine() (PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM

method), 205
startMine() (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

method), 212
startMine() (PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth

method), 100
startMine() (PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth

Index 355

PAMI, Release 2024.04.23

method), 105
startMine() (PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth

method), 109
startMine() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth

method), 33
startMine() (PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus

method), 37
startMine() (PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT

method), 127
startMine() (PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth

method), 123
startMine() (PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose

method), 135
startMine() (PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner

method), 142
startMine() (PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth

method), 330
startMine() (PAMI.periodicCorrelatedPattern.basic.EPCPGrowth.EPCPGrowth

method), 147
startMine() (PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT

method), 77
startMine() (PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth

method), 64
startMine() (PAMI.periodicFrequentPattern.basic.PFPGrowthPlus.PFPGrowthPlus

method), 68
startMine() (PAMI.periodicFrequentPattern.basic.PFPMC.PFPMC

method), 80
startMine() (PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth

method), 72
startMine() (PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner

method), 84
startMine() (PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth

method), 88
startMine() (PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner

method), 91
startMine() (PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth

method), 95
startMine() (PAMI.recurringPattern.basic.RPGrowth.RPGrowth

method), 164
startMine() (PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth

method), 29
startMine() (PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM

method), 187
startMine() (PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan

method), 323
startMine() (PAMI.sequentialPatternMining.basic.SPADE.SPADE

method), 314
startMine() (PAMI.sequentialPatternMining.basic.SPAM.SPAM

method), 318
startMine() (PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat

method), 155
startMine() (PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth

method), 152
startMine() (PAMI.stablePeriodicFrequentPattern.topK.TSPIN.TSPIN

method), 159
startMine() (PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree

method), 271
startMine() (PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth

method), 275
startMine() (PAMI.uncertainFrequentPattern.basic.TubeP.TUFP

method), 283
startMine() (PAMI.uncertainFrequentPattern.basic.TUFP.TUFP

method), 279
startMine() (PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth

method), 308
startMine() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth

method), 298
startMine() (PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus

method), 303
startMine() (PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth

method), 239
startMine() (PAMI.weightedFrequentPattern.basic.WFIM.WFIM

method), 230
startMine() (PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner

method), 235
startTime (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

attribute), 212
STEclat (class in PAMI.georeferencedPartialPeriodicPattern.basic.STEclat),

175
strToint (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

attribute), 212
SWFPGrowth (class in PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth),

235

T
temp (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM

attribute), 212
tidToBitset() (PAMI.coveragePattern.basic.CMine.CMine

method), 53
TKSHUIM (class in PAMI.highUtilitySpatialPattern.topk.TKSHUIM),

206
TopkPFPGrowth (class in

PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP),
92

Transaction (class in
PAMI.highUtilitySpatialPattern.topk.TKSHUIM),
214

transactions (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Dataset
attribute), 206

Tree (class in PAMI.localPeriodicPattern.basic.LPPGrowth),
100

Tree (class in PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth),
113

TSPIN (class in PAMI.stablePeriodicFrequentPattern.topK.TSPIN),
156

TubeS (class in PAMI.uncertainFrequentPattern.basic.TubeS),
283

356 Index

PAMI, Release 2024.04.23

TUFP (class in PAMI.uncertainFrequentPattern.basic.TubeP),
279

TUFP (class in PAMI.uncertainFrequentPattern.basic.TUFP),
275

U
UFGrowth (class in PAMI.uncertainFrequentPattern.basic.UFGrowth),

287
updateTransactions()

(PAMI.uncertainFrequentPattern.basic.TubeS.TubeS
method), 287

UPFPGrowth (class in PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth),
294

UPFPGrowthPlus (class in
PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus),
299

UPGrowth (class in PAMI.highUtilityPattern.basic.UPGrowth),
223

useUtilityBinArraysToCalculateUpperBounds()
(PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
method), 214

useUtilityBinArrayToCalculateLocalUtilityFirstTime()
(PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
method), 214

useUtilityBinArrayToCalculateSubtreeUtilityFirstTime()
(PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
method), 214

utilityBinArrayLU (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
attribute), 214

utilityBinArraySU (PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM
attribute), 214

UVEclat (class in PAMI.uncertainFrequentPattern.basic.UVECLAT),
290

W
WFIM (class in PAMI.weightedFrequentPattern.basic.WFIM),

226
WFRIMiner (class in PAMI.weightedFrequentRegularPattern.basic.WFRIMiner),

231

Index 357

	Transactional Database
	Frequent Pattern mining
	Basic
	Apriori
	About this algorithm
	Execution methods
	Credits

	ECLAT
	About this algorithm
	Execution methods
	Credits:

	ECLATDiffset
	Execution methods
	Credits:

	ECLATbitset
	Execution methods
	Credits:

	FPGrowth
	About this algorithm
	Execution methods
	Credits:

	Closed
	CHARM
	Execution methods
	Credits:

	Maximal
	MaxFPGrowth
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	CUDA
	cuApriori
	cuAprioriBit
	cuEclat
	cuEclatBit
	cudaAprioriGCT
	cudaAprioriTID
	cudaEclatGCT

	Pyspark
	parallelApriori
	parallelECLAT
	parallelFPGrowth

	Top K
	FAE
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	Relative Frequent Pattern
	Basic
	RSFPGrowth
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	Frequent pattern With Multiple Minimum Support
	Basic
	CFPGrowth
	Executing the code on terminal:
	Sample run of the importing code:
	Credits:

	CFPGrowthPlus
	Executing the code on terminal:
	Sample run of the importing code:
	Credits:

	Correlated Pattern Mining
	Basic
	CoMine
	About this algorithm
	Execution methods
	Credits

	CoMinePlus
	About this algorithm
	Execution methods
	Credits

	Fault-Tolerant Frequent Pattern Mining
	Basic
	FTApriori
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	FTFPGrowth
	Executing the code on terminal:
	Sample run of the importing code:
	Credits:

	Coverage Pattern Mining
	Basic
	CMine
	About this algorithm
	Execution methods
	Credits

	CPPG
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	Temporal Database
	Periodic Frequent Pattern Mining
	Basic
	PFPGrowth
	Credits:

	PFPGrowthPlus
	Methods to execute code on terminal
	Importing this algorithm into a python program

	PSGrowth
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	PFECLAT
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	PFPMC
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	closed
	CPFPMiner
	About this algorithm
	Execution methods
	Credits:

	maximal
	MaxPFGrowth
	Executing the code on terminal:
	Sample run of the imported code:
	Credits:

	Top-K
	kPFPMiner
	Executing the code on terminal:
	red**Sample run of the importing code:
	Credits:

	TopkPFP

	Local Periodic Pattern Mining
	Basic
	LPPGrowth
	Executing the code on terminal:
	Sample run of importing the code:
	Credits:

	LPPMBreadth
	Executing the code on terminal:
	Sample run of importing the code:
	Credits:

	LPPMDepth
	Executing the code on terminal:
	Sample run of importing the code:
	Credits:

	Partial Periodic Frequent Pattern Mining
	Basic
	GPFgrowth
	Executing code on Terminal:
	Sample run of the importing code:
	Credits:

	PPF_DFS
	Executing code on Terminal:
	Sample run of the importing code:
	Credits:

	Partial Periodic Pattern Mining
	Basic
	PPPGrowth
	Executing the code on terminal:
	Sample run of the importing code:
	Credits:

	PPP_ECLAT
	Executing the code on terminal:
	Sample run of importing the code:
	Credits:

	GThreePGrowth
	Executing the code on terminal:
	Sample run of the importing code:
	Credits:

	closed
	PPPClose
	Executing the code on terminal:
	Sample run of the imported code:
	Credits:

	maximal
	Max3PGrowth
	Executing the code on terminal:
	Sample run of the importing code:
	Credits:

	TopK
	k3PMiner
	Executing the code on terminal:
	Sample run of the importing code:
	Credits:

	Cuda

	Periodic correlated pattern mining
	Basic
	EPCPGrowth
	Executing the code on terminal:
	Sample run of importing the code:
	Credits:

	Stable Periodic Pattern Mining
	Basic
	SPPGrowth
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	SPPEclat
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	TopK
	TSPIN
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	Recurring Pattern Mining
	Basic
	RPGrowth
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	Geo-referenced Pattern Mining
	Geo-referenced Frequent Pattern Mining
	Basic
	SpatialECLAT
	Executing the code on terminal :
	Sample run of importing the code :
	Credits:

	FSPGrowth

	Geo-referenced Periodic Frequent Pattern Mining
	Basic
	GPFPMiner
	Executing the code on terminal :
	Sample run of importing the code :
	Credits:

	Geo-referenced Partial Periodic Pattern Mining
	Basic
	STEclat
	Executing the code on terminal :
	Sample run of importing the code :
	Credits:

	Utility Pattern mining
	High-Utility Pattern mining
	Basic
	RHUIM
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	High-Utility Frequent Pattern Mining
	Basic
	HUFIM
	Executing the code on terminal
	Sample run of importing the code
	Credits:

	High-Utility Geo-referenced Frequent Pattern Mining
	Basic
	SHUFIM
	Executing the code on terminal :
	Sample run of importing the code:
	Credits:

	High-Utility Spatial Pattern Mining
	Basic
	HDSHUIM
	Executing the code on terminal:
	Sample run of importing the code:
	Credits:

	SHUIM
	Executing the code on terminal:
	Sample run of importing the code:
	Credits:

	Top-K
	TKSHUIM
	Executing the code on terminal:
	Sample run of importing the code:
	Credits:

	Relative High-Utility Pattern Mining
	Basic
	EFIM
	Executing the code on terminal:
	Sample run of importing the code:
	Credits:

	HMiner
	Executing the code on terminal:
	Sample run of importing the code:
	Credits:

	UPGrowth
	Executing the code on terminal:
	Sample run of importing the code:
	Credits:

	Weighted Frequent Pattern Mining
	Basic
	WFIM
	About this algorithm
	Execution methods
	Credits

	Weighted Frequent Regular Pattern Mining
	Basic
	WFRIMiner
	About this algorithm
	Execution methods
	Credits

	Weighted Frequent Neighbourhood Pattern Mining
	Basic
	SWFPGrowth
	About this algorithm
	Execution methods
	Credits

	Fuzzy Pattern Mining
	Fuzzy Frequent Pattern Mining
	Basic
	FFIMiner
	Executing the code on terminal :
	Sample run of importing the code:
	Credits:

	Fuzzy Correlated Pattern Mining
	Basic
	FCPGrowth
	Executing the code on terminal :
	Sample run of importing the code:
	Credits:

	Fuzzy Geo-referenced Frequent Pattern Mining
	Basic
	FFSPMiner
	About this algorithm
	Execution methods
	Credits

	Fuzzy Periodic Frequent Pattern Mining
	Basic
	FPFPMiner
	Executing the code on terminal :
	Sample run of importing the code:
	Credits:

	Fuzzy Geo-referenced Periodic Frequent Pattern Mining
	Basic
	FGPFPMiner
	About this algorithm
	Credits

	Uncertain Database
	Uncertain Frequent Pattern mining
	Basic
	CUFPTree
	About this algorithm
	Execution methods
	Credits

	PUFGrowth
	About this algorithm
	Execution methods
	Credits

	TUFP
	About this algorithm
	Execution methods
	Credits

	TubeP
	About this algorithm
	Execution methods
	Credits

	TubeS
	About this algorithm
	Execution methods
	Credits

	UFGrowth
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	UVECLAT
	About this algorithm
	Execution methods
	Calling from a python program

	Credits

	Uncertain Periodic Frequent Pattern mining
	Basic
	UPFPGrowth
	About this algorithm
	Execution methods
	Credits

	UPFPGrowthPlus
	About this algorithm
	Execution methods
	Credits:

	Uncertain Geo-Referenced Frequent Pattern mining
	Basic
	GFPGrowth
	About this algorithm
	Execution methods
	Credits

	Sequential Database
	Sequential Frequent Pattern mining
	Basic
	SPADE
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	SPAM
	Executing the code on terminal:
	Sample run of the importing code:
	Credits:

	prefixSpan
	Methods to execute code on terminal
	Importing this algorithm into a python program
	Credits:

	closed
	bide

	Geo-referenced Frequent Sequence Pattern mining

	Multiple Timeseries
	Multiple Partial Periodic Pattern Mining
	Basic
	PPGrowth
	About this algorithm
	Execution methods
	Sample run of importing the code:
	Credits:

	Contiguous Patterns
	Contiguous Frequent Patterns

	Indices and tables
	Python Module Index
	Index

